

DIGITAL SERVO DRIVE FOR STEPPER MOTORS

CONTROL MODES

- Microstepping Mode: Profile Position/Velocity, Interpolated Position, Homing
- Servo Mode: Cyclic Synchronous Position/Velocity/Torque (CSP/CSV/CST)
- · Camming, Gearing
- Indexer

COMMAND INTERFACE

- CANopen application protocol over EtherCAT (CoE)
- ASCII and discrete I/O
- Stepper commands
- ±10V position/velocity/torque
- PWM velocity/torque command
- Master encoder (Gearing/Camming)

COMMUNICATIONS

- EtherCAT
- RS-232

FEEDBACK

Incremental Encoders

- Digital guad A/B/X
- Aux. quad A/B/X encoder

Absolute Encoders

EnDat, Sanyo Denki Absolute A

I/O DIGITAL

- 6 High-speed inputs
- 1 Motor over-temp input
- 4 Opto-Isolated inputs
- 3 Opto-Isolated outputs
- 1 Opto-Isolated brake output

I/O ANALOG

• 1 Reference Input, 12-bit

SAFE TORQUE OFF (STO)

• SIL 3, Category 3, PL d

DIMENSIONS: IN [MM]

- 5.08 x 3.41 x 1.99 [129 x 86.6 x 50.4]
- 5.08 x 3.41 x 3.39 [129 x 86.6 x 86.1] with heatsink

DESCRIPTION

Stepnet Plus TEL is a high-performance DC powered microstepping drive for control of hybrid stepping motors via EtherCAT using the CAN Application protocol for EtherCAT (CoE). Microstepping modes are Profile Position, Interpolated Position Mode (PVT), and Homing. With encoder feedback, the TEL can operate a stepper as a brushless servo motor, enabling Cyclic Sync Position/Velocity/ Torque operation.

As well as operating on EtherCAT networks, the TEL also supports the following traditional control modes: step/direction, RS-232 ASCII, master encoder for gearing and camming, digital input commands to initiate predetermined motion sequences.

Drive commissioning is fast and simple using CME 2^{TM} software operating under Windows® and communicating with the TEL via RS-232 or an EtherCAT network.

Feedback from incremental and absolute encoders is supported. A multi-mode encoder port functions as an input or output depending on the drive's basic setup. As an input it takes feedback from a secondary encoder to create a dual-loop position control system or as a master encoder for driving a cam table.

Model	Ip	Ic	Vdc
TEL-090-07	7	5	90
TEL-090-10	10	10	90

As an output, it buffers the digital encoder signals from the motor's digital encoder and eliminates split cables that would be needed to send the signals to both drive and control system.

There are seven non-isolated inputs and four opto-isolated digital inputs that are bipolar types, sourcing or sinking current into a common connection that can be tied to ground or +24V. [IN1] defaults to the drive Enable function and is programmable to other functions. The other inputs are programmable. All inputs have programmable active levels. Three opto-isolated outputs [OUT1~3] have individual collector/emitter connections. An isolated MOSFET output [OUT4] is programmable to drive a motor brake or other functions and has an internal flyback diode for driving inductive loads.

Drive power is transformer-isolated DC from regulated or unregulated power supplies. An AuxHV input is provided for "keep-alive" operation permitting the drive power stage to be completely powered down without losing position information, or communications with the control system.

GENERAL SPECI	FICATIONS			
Test conditions: Load = MODEL	Two coils: 2 mH, 2 Ω. Amb	ient temperature = 25°C, + TEL-090-10	$HV = HV_{max}$	
OUTPUT POWER				
Peak Current Peak time	7 (4.95) 1	10 (7.07) 1		Adc (Arms-sine), ±5% Sec
Continuous current (No		10 (7.07)		Adc (Arms-sine) per phase
INPUT POWER				
HVmin~HVmax Ipeak	+14 to +90 7	+14 to +90 10		Vdc Transformer-isolated Adc (1 sec) peak
Icont	5	10		Adc continuous
Aux HV		o, no load on encoder +5V outp	uired for operation ut), 6 W, (Max, enco	der +5V @ 500 mA)
DIGITAL CONTROL Digital Control Loops		Current, velocity, position. 10	0% digital loop cont	rol
Sampling rate (time)		Current loop: 16 kHz (62.5 µs	s), Velocity & positio	n loops: 4 kHz (250 μs)
Bus voltage compensa Minimum load inductar		Changes in bus or mains volta 200 µH	age do not affect bar	ndwidth
	: DIGITAL INPUT FUNCTIONS ARI	•		
CANopen application p	rotocol over EtherCAT (CoE)	Servo mode: Cyclic Synchron		
Stand-alone mode		Microstepping mode: Profile P	osition/velocity, filte	erpolated Position, Homing
Analog position/vel Digital position refe	locity/torque reference	±10 Vdc, 12-bit resolution Pulse/Direction, CW/CCW		erential analog input nands (2 MHz maximum rate)
		Quad A/B Encoder	2 M line/sec, 8	3 Mcount/sec (after quadrature)
Digital velocity/tor	que reference	PWM , Polarity PWM 50%		100%, Polarity = 1/0 -50%, no polarity signal required
		PWM frequency range PWM minimum pulse width	1 kHz minimu 220 ns	m, 100 kHz maximum
Indexing		Up to 32 sequences can be la	unched from inputs	
Camming ASCII		Up to 10 CAM tables can be s RS-232, DTE, 9600~115,200		
DIGITAL INPUTS				
Number 11 [IN1,2] [Digital, non-isolated, Schmitt trigg	ger. 1 us RC filter. 24 Vdc compa	atible, programmable	e pull-up/down to +5 Vdc/ground,
\	$/t+ = 2.5 \sim 3.5 \text{ Vdc}, \text{ VT-} = 1.3 \sim 2.$	2 Vdc, VH = 0.7~1.5 Vdc		
1	Digital, non-isolated, programmat .0 kΩ programmable pull-up/dow	n per input to +5 Vdc/ground,		
[IN7,8,9,10] [SE: Vin-LO ≤ 2.3 Vdc, Vin-HI ≥ 2 Digital, opto-isolated, single-ende	.7 Vdc, VH = 45 mV typ, DIFF: 'd, ±15~30 Vdc compatible, bi-r	Vin-LO ≤ 200 mVdc, oolar, with common	Vin-HI ≥ 200 mVdc, VH = 45 mV typ, return
	Rated impulse ≥ 800 V, Vin-l Defaults as motor overtemp input	LO ≤ 6.0 Vdc, Vin-HI ≥ 10.0 Vd	c, Input current ±3.	6 mA @ ±24 Vdc, typical
[IN11] [Other digital inputs are also	programmable for the Motemp 1	function	
Functions A	330 µs RC filter, 4.99k pull-u All inputs are programmable, [IN]	p to +5 Vdc, Vt+ = 2.5~3.5 Vd		
ANALOG INPUTS	pato are programmasio, [2112	ij deradite të tire zirabre ramette	a.i.a io programma	sie iei eine iuneiens
Number [AIN1]	1 Differential, ± 10 Vdc, $5 \text{ k}\Omega$ input	it impedance. 12-bit resolution		
SAFE TORQUE OFF (STO)	Differential, =10 vac, 5 kg2 mpc	at impedance, 12 bit resolution		
Function Standard	PWM outputs are inactive and on Designed to IEC-61508-1, IEC-			TO function is asserted
Safety Integrity Level	SIL 3, Category 3, Performance	e level d	15049 1	
Inputs Type	2 two-terminal: STO-IN1+,STO Opto-isolators, 24V compatible		-HI > 15.0 Vdc.	
Input current (typical)	STO-IN1: 9.0 mA, STO-IN2: 4.	, 5 mA	,	
Response time Reference	2 ms (IN1, IN2) from Vin ≤6.0 Complete information and s			s Panels STO Manual
DIGITAL OUTPUTS				
Number [OUT1~3]	4 Opto-isolated SSR, two-termina	al, 300 mA max, 24 V tolerant,	Rated impulse ≥ 800) V, series 1 Ω resistor
[OUT4]	Opto-isolated MOSFET, default	as motor brake control, current	-sinking,	
	1 Adc max, flyback diodes to + Programmable for other function			us
RS-232 PORT	DVD TVD Cod in 6 position 4	contact D1 11 ctula modular as	nnoctor non indictor	d common to Signal Craund
Signals Mode	Full-duplex, DTE serial commun	contact RJ-11 style modular con nication port for drive setup and		
Protocol	Binary and ASCII formats			
ETHERCAT PORTS Format	Dual RJ-45 receptacles, 100BAS	SE-TX		
Protocol	EtherCAT, CANopen application		CiA-402 for motion	control devices

1) Heatsink or forced-air is required for continuous current rating

GENERAL SPECIFICATIONS

DC POWER OUTPUT Number

Ratings

+5 Vdc, 500 mA max, thermal and short-circuit protected The combined current from Feedback J6-6,17 and Control J1-17,32 cannot exceed 500 mA Connections

INDICATORS

AMP Bicolor LED, drive state indicated by color, and blinking or non-blinking condition RUN Green LED, status of EtherCAT state-machine (ESM)

Red LED, shows errors due to time-outs, unsolicited state changes, or local errors FRR L/A

Green LED, Link/Act, shows the state of the physical link and activity on the link (EtherCAT connection)

RUN, ERR, and L/A LED colors and blink codes conform to ETG.1300 S(R) V1.1.0

PROTECTIONS

Drive outputs turn off until +HV < 90 VdcDrive outputs turn off until +HV > +14 VdcHV Overvoltage +HV > 90 VdcHV Undervoltage +HV < +14 Vdc

Heat plate > 70°C. Drive over temperature Drive outputs turn off

Output to output, output to ground, internal PWM bridge faults Short circuits I²T Current limiting Programmable: continuous current, peak current, peak time Motor over temperature Digital input programmable to detect motor temperature switch

MECHANICAL & ENVIRONMENTAL

 $5.08 \times 3.41 \times 1.99$ [129 x 86.6 x 50.4] in[mm] without heatsink Size 5.08 x 3.41 x 3.39 [129 x 86.6 x 86.1] in[mm] with heatsink

Weight 0.75 [0.34] lb[kg] without heatsink 1.70 [0.77] lb[kg] with heatsink

Ambient temperature 0 to +45C operating, -40 to +85C storage, as per IEC 60068-2-1:2007 and IEC 60068-2-2:2007

Humidity 0 to 95%, non-condensing, as per IEC 60068-2-78:2001 Altitude ≤ 2000m (6560 ft), as per IEC 60068-2-13:1983 2 g peak, 10~500 Hz (sine), as per IEC 60068-2-6:2007 Vibration 110 g, 10 ms, half-sine pulse, as per IEC 60068-2-27:2008 Pollution degree 2, as per IEC 60664-1:2007 Shock

Contaminants

Environment IEC68-2: 1990 Cooling Heat sink and/or forced air cooling required for continuous power output

AGENCY STANDARDS CONFORMANCE

Standards and Directives

Functional Safety

IEC 61508-1:2010, IEC 61508-2:2010, IEC 61508-3:2010, IEC 61508-4: 2010 (SIL 3)

Directive 2006/42/EC (Machinery) ISO 13849-1:2015 (Cat 3, PL d) IEC 61800-5-2:2007 (SIL3)

see The Accelnet & Stepnet Plus Panels STO Manual (16-01338) for further details

Product Safety

Directive 2014/35/EU (Low Voltage) IEC 61800-5-1:2007

EMC

Directive 2014/30/EU (EMC) IEC 61800-3:2004/A1:2011

Restriction of the Use of Certain Hazardous Substances (RoHS) Directive 2011/65/EU (RoHS II)

Approvals

UL and cUL recognized component to: UL 61800-5-1, 1st Ed.

TÜV SÜD Functional Safety to:

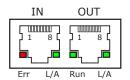
IEC 61508-1:2010, IEC 61508-2:2010, IEC 61508-3:2010, IEC 61508-4: 2010 (SIL 3)

ISO 13849-1:2015 (Cat 3, PL d)

GENERAL SPECIFICATIONS

FEEDBACK	
Incremental:	
Digital Incremental Encoder	Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required)
	5 MHz maximum line frequency (20 M counts/sec)
	MAX3096 differential line receiver with 121 Ω terminating resistor between A & /A, B & /B inputs
	X & /X inputs have 130 Ω terminating resistor, S & /S inputs have 221 Ω terminating resistor
	X & S inputs have 1 k Ω pull-ups to +5V, /X & /X inputs have 1 k Ω pull-down to ground
Absolute:	A & 3 inputs have I kis pair ups to 134, /A & /A inputs have I kis pair down to ground
EnDat	Clock (X, /X), Data (S, /S)
Absolute A	Sanyo Denki Absolute A
Absolute A	SD+, SD- (S, /S) signals, 2.5 or 4 MHz, 2-wire half-duplex communication
	Status data for encoder operating conditions and errors
	Status data for encoder operating conditions and errors
DIGITAL HALLS	
Type	Digital, single-ended, 120° electrical phase difference between U-V-W signals,
71-	Schmitt trigger, 1.5 µs RC filter, 24 Vdc compatible, 15k pull-up to +5 Vdc,
	Vt+ = 2.5~3.5 Vdc, VT- = 1.3~2.2 Vdc, VH = 0.7~1.5 Vdc
Inputs	15 kg pull-ups to +5 Vdc, 1.5 µs RC filter to Schmitt trigger inverters
	13 ksz puli ups to 13 vuc, 1.3 ps ke inter to Seminer trigger inverters
MULTI-MODE ENCODER PORT	
As Input	Digital quadrature encoder (A, /A, B, /B, X, /X), 5 MHz maximum line frequency (20 M counts/sec),
	MAX3096 line receiver, 1 k Ω pull-ups to +5V on X & S inputs, 1 k Ω pull-downs to Sgnd on /X & /S inputs
	Digital absolute encoder (Clk, /Clk, Dat, /Dat) half or full-duplex operation,
	S & X inputs are used for absolute encoder interface
As Emulated Output	Quadrature A/B encoder emulation with programmable resolution to 4096 lines (65,536 counts) per
'	rev from absolute encoders
	A, /A, B, /B, from MAX3032 differential line driver, X, /X, S, /S from MAX3362 differential line driver
As Buffered Output	Digital A/B/X encoder feedback signals from primary guad encoder are buffered (see line drivers above)
	2.5.ca. 1, 2, 1 chaosa. 1000000 and 100000 are builded (see line director dove)

ETHERCAT COMMUNICATIONS


EtherCAT is the open, real-time Ethernet network developed by Beckhoff based on the widely used 100BASE-TX cabling system. EtherCAT enables high-speed control of multiple axes while maintaining tight synchronization of clocks in the nodes.

ETHERCAT CONNECTIONS

Dual RJ-45 sockets accept standard Ethernet cables. The IN port connects to a master, or to the OUT port of a device that is $\frac{1}{2}$ 'upstream', between the Stepnet and the master.

Data protocol is CANopen application protocol over EtherCAT (CoE) based on DSP-402 for motion control devices. More information on EtherCAT can be found on this web-site: http://ethercat.org/default.htm

The OUT port connects to 'downstream' nodes. If Stepnet is the last node on a network, only the IN port is used. No terminator is required on the OUT port.

J3: EtherCAT PORTS RJ-45 receptacles, 8 position, 4 contact

ETHERCAT LEDS (ON RJ-45 CONNECTORS)

Green: Shows the state of the ESM (EtherCAT State Machine)

Init

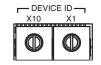
Blinking Pre-operational Single-flash Safe-operational Operational

Red: Shows errors such as watchdog timeouts and unsolicited state changes in the TEL due to local errors.

EtherCAT communications are working correctly Blinking = Invalid configuration, general configuration error

Single Flash = Local error, slave has changed EtherCAT state autonomously

Double Flash = PDO or EtherCAT watchdog timeout, or an application watchdog timeout has occurred


Green: Shows the state of the physical link and activity on the link.

A green LED indicates the state of the EtherCAT network:

Activity **LED** Condition ON Yes No Port Open

Port Open with activity Flickering Yes

(N/A)Port Closed

S1S2 EtherCAT Device ID Switch Decimal values

Set x10 x1 Set x10 Hex Dec Hex Dec 0 0 8 0 128 1 16 9 144 2 32 2 Α 160 3 В 48 3 176 4 64 4 С 192 5 80 5 D 208 6 96 6 Е 224 112 240

x1

8

9

10

11

12

13

14

15

EtherCAT DEVICE ID (STATION ALIAS)

In an EtherCAT network, slaves are automatically assigned consecutive addresses based on their position on the network. But when the device must have a positive identification that is independent of cabling, a Device ID is used. In the TEL, this is provided by two 16-position rotary switches with hexadecimal encoding. These can set the Device ID of the drive from 0x00~0xFF (0~255 decimal). The chart shows the decimal values of the hex settings of each switch.

Example 1: Find the switch settings for decimal Device ID 107:

- 1) Find the highest number in the x10 column that is less than 107 and set x10 to the hex value in the same row: 96 < 107 and 112 > 107, so x10 = 96 = Hex 6
- 2) Subtract 96 from the desired Device ID to get the decimal value for the switch x1 and set it to the Hex value in the same row: x1 = (107 - 96) = 11 = Hex B
- 3) Result: X10 = 6, X1 = B, Alias = 0x6B (107)

INDICATORS: DRIVE STATE

Two bi-color LEDs give the state of the TEL drive. Colors do not alternate, and can be solid ON or blinking. When multiple conditions occur, only the top-most condition will be displayed. When that condition is cleared the next one TELow will shown.

1) Red/Blinking 2) Red/Solid

Latching fault. Operation will not resume until drive is Reset.
 Transient fault condition. Drive will resume operation when

the condition causing the fault is removed.

3) Green/Double-Blinking =

STO circuit active, drive outputs are Safe-Torque-Off Drive OK but NOT-enabled. Will run when enabled.

4) Green/Slow-Blinking 5) Green/Fast-Blinking

Positive or Negative limit switch active.

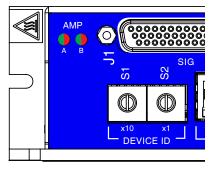
7) Green/Solid

Drive will only move in direction not inhibited by limit switch. Drive OK and enabled. Will run in response to

reference inputs or EtherCAT commands.

Latching Faults

Defaults


Short circuit (Internal or external)

- Drive over-temperature
- Motor over-temperature Feedback Error
- Following Error

Optional (programmable)

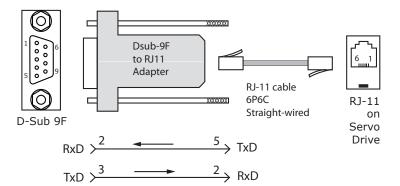
- Over-voltage
- Under-voltage
- Motor Phasing Error
- Command Input Fault

AMP LED & **DEVICE ID SWITCHES**

COMMUNICATIONS: RS-232 SERIAL

TEL is configured via a three-wire, full-duplex DTE RS-232 port that operates from 9600 to 115,200 Baud, 8 bits, no parity, and one stop bit. Signal format is full-duplex, 3-wire, DTE using RxD, TxD, and Gnd. Connections to the TEL RS-232 port are through J2, an RJ-11 connector. The TEL Serial Cable Kit (SER-CK) contains a modular cable, and an adapter that connects to a 9-pin, Sub-D serial port connector (COM1, COM2, etc.) on PC's and compatibles.

After power-on, reset, or transmission of a Break character, the Baud rate will be 9,600. Once communication has been established at this speed, the Baud rate can be changed to a higher rate (19,200, 57,600, 115,200).


SER-CK SERIAL CABLE KIT

The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector on the TEL. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses common modular cable to connect to the TEL. The connections are shown in the diagram TELow.

J2: RS-232 PORT RJ-11 receptacle, 6 position, 4 contact

Don't forget to order a Serial Cable Kit SER-CK when placing your order for a TEL!

USB TO RS-232 ADAPTERS

These may or may not have the speed to work at the 115,200 Baud rate which gives the best results with CME2. Users have reported that adapters using the FTDI chipset work well with CME2

ASCII COMMUNICATIONS

The Copley ASCII Interface is a set of ASCII format commands that can be used to operate and monitor Copley Controls TEL series drives over an RS-232 serial connection. For instance, after basic amplifier configuration values have been programmed using CME 2, a control program can use the ASCII Interface to:

- Enable the amplifier in Programmed Position mode.
- Home the axis.
- Issue a series of move commands while monitoring position, velocity, and other run-time variables.

After power-on, reset, or transmission of a Break character, the Baud rate will be 9,600. Once communication has been established at this speed, the Baud rate can be changed to a higher rate (19,200, 57,600, 115,200).

ASCII parameter 0x90 holds the Baud rate data. To set the rate to 115,200 enter this line from a terminal:

s r0x90 115200 <enter>

Then, change the Baud rate in the computer/controller to the new number and communicate at that rate.

Additional information can be found in the ASCII Programmers Guide on the Copley website: http://www.copleycontrols.com/Motion/pdf/ASCII_ProgrammersGuide.pdf

SAFE TORQUE OFF (STO)

The Safe Torque Off (STO) function is defined in IEC 61800-5-2. Two channels are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from being operated by the digital control core.

This provides a positive OFF capability that cannot be overridden by the control firmware, or associated hardware components. When the opto-couplers are energized (current is flowing in the input diodes), the control core will be able to control the on/off state of the PWM outputs.

INSTALLATION

Refer to the Accelnet & Stepnet Plus Panels STO Manual

The information provided in the Accelnet & Stepnet Plus Panels STO Manual must be considered for any application using the drive's STO feature.

FAILURE TO HEED THIS WARNING CAN CAUSE EQUIPMENT DAMAGE, INJURY, OR DEATH.

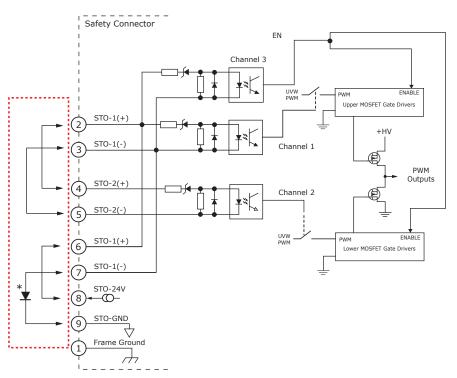
STO BYPASS (MUTING)

In order for the PWM outputs of the TEL to be activated, current must be flowing through all of the opto-couplers that are connected to the STO-IN1 and STO-IN2 terminals of J4, and the drive must be in an ENABLED state. When the opto-couplers are OFF, the drive is in a Safe Torque Off (STO) state and the PWM outputs cannot be activated by the control core to drive a motor.

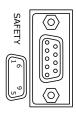
This diagram shows connections that will energize all of the optocouplers from an internal current-source. When this is done the STO feature is overridden and control of the output PWM stage is under control of the digital control core.

If not using the STO feature, these connections must be

made in order for the drive to be enabled.


FUNCTIONAL DIAGRAM

STO BYPASS CONNECTIONS



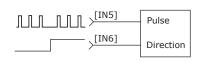
Current must flow through all of the opto-couplers before the drive can be enabled

* STO bypass connections on the TEL and Xenus XEL-XPL models are different. If both drives are installed in the same cabinet, the diode should be wired as shown to prevent damage that could occur if the STO bypass connectors are installed on the wrong drive. The diode is not required for STO bypass on the TEL and can be replaced by a wire on the TEL and can be replaced by a wire between pins 7 and 9.

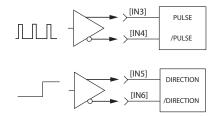
SAFETY CONNECTOR J4

CONNECTIONS

PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	6	STO-1(+)
2	STO-1(+)	7	STO-1(-)
3	STO-1(-)	8	STO-24V
4	STO-2(+)	9	STO-GND
5	STO-2(-)		

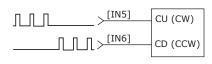

DIGITAL COMMAND INPUTS: POSITION

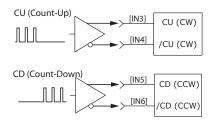
POSITION COMMAND INPUTS


Single-ended digital position commands must be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs.

For differential commands, the A & B channels of the multi-mode encoder ports are used.

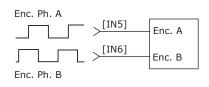
SINGLE-ENDED PULSE & DIRECTION

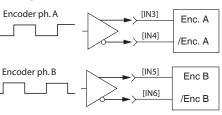

DIFFERENTIAL PULSE & DIRECTION


SINGLE-ENDED: IN5, 6

Signal	J1 Pins
Signal	31 1 1113
[IN5] Pls, CU, Enc A	11
[IN6] Dir, CD, Enc B	12
Signal Ground	6,16,22,31, 37,44
Frame Ground	1

SINGLE-ENDED CU/CD

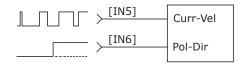

DIFFERENTIAL CU/CD


DIFFERENTIAL: IN3,4,5,6

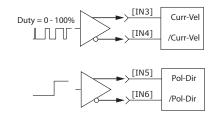
Signal	J1 Pins
[IN3] Pls, CU, Enc A	9
[IN4] /Pls, /CU, Enc /A	10
[IN5] Dir, CD, Enc B	11
[IN6] /Dir, /CD, Enc /B	12
Signal Ground	6,16,22,31, 37,44
Frame Ground	1

QUAD A/B ENCODER SINGLE-ENDED

QUAD A/B ENCODER DIFFERENTIAL



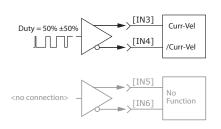
DIGITAL COMMAND INPUTS: VELOCITY, TORQUE


Single-ended digital torque or velocity commands must be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs.

For differential commands, the A & B channels of the multi-mode encoder ports are used.

SINGLE-ENDED PWM & DIRECTION

DIFFERENTIAL PWM & DIRECTION


SINGLE-ENDED: IN5,6

Signal	J1 Pins
[IN5] Curr-Vel±	11
[IN6] Pol-Dir	12
Sgnd	6,16,22,31, 37,44
Frame Ground	1

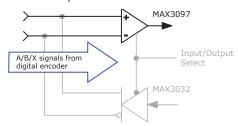
SINGLE-ENDED 50% PWM

DIFFERENTIAL 50% PWM

DIFFERENTIAL: IN3,4,5,6

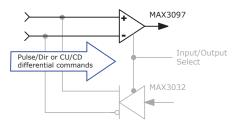
Signal	J1 Pins
[IN3] Curr-Vel±	9
[IN4] / Curr-Vel±	10
[IN5] Pol-Dir	11
[IN6] /Pol-Dir	12
Signal Ground	6,16,22,31, 37,44
Frame Ground	1

copley Stepnet Plus Panel EtherCAT

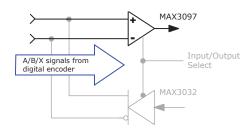


MULTI-MODE PORT AS AN INPUT

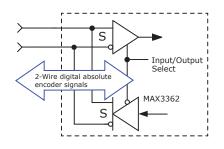
INPUT TYPES

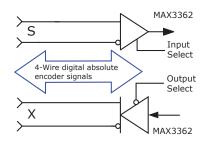

POSITION COMMAND INPUTS: DIFFERENTIAL

- · Pulse & Direction
- CW & CCW (Clockwise & Counter-Clockwise)
- Encoder Quad A & B
- Camming Encoder A & B input


CURRENT or VELOCITY COMMAND INPUTS: DIFFERENTIAL

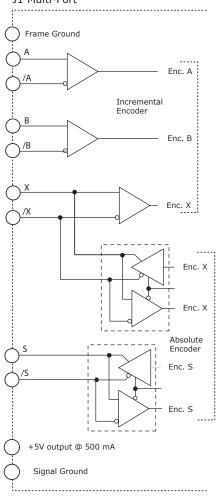
- Current or Velocity & Direction
- Current or Velocity (+) & Current or Velocity (-)


SECONDARY FEEDBACK: INCREMENTAL


• Quad A/B/X incremental encoder

SECONDARY FEEDBACK: ABSOLUTE

- S channel: Absolute A encoders (2-wire) The S channel first sends a Clock signal and then receives Data from the encoder in half-duplex mode.
- S & X channels: SSI, BiSS, EnDat encoders (4-wire) The X channel sends the Clock signal to the encoder, which initiates data transmission from the encoder on the S-channel in full-duplex mode



SIGNALS & PINS

Signal	J1
Pulse, CW, Encoder A	36
/Pulse, /CW, Encoder /A	21
Direction, CCW, Encoder B	35
/Direction, /CCW, Encoder /B	20
Quad Enc X, Absolute Clock	34
Quad Enc /X, /Absolute Clock	19
Enc S, Absolute (Clock) Data	33
Enc /S, / Absolute (Clock) Data	18
Signal Ground	6, 16, 22, 31, 37, 44
Frame Ground	1

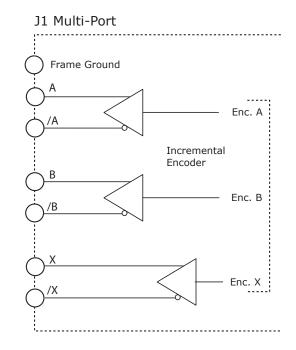
J1 Multi-Port

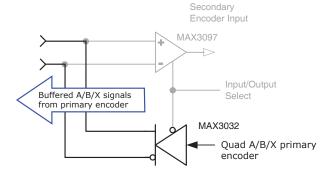
MULTI-MODE PORT AS AN OUTPUT

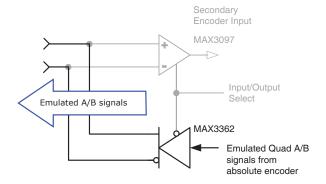
OUTPUT TYPES

BUFFERED FEEDBACK OUTPUTS: DIFFERENTIAL

- Encoder Quad A, B, X channels
- Direct hardware connection between quad A/B/X encoder feedback and differential line drivers for A/B/X outputs


EMULATED FEEDBACK OUTPUTS: DIFFERENTIAL


Firmware produces emulated quad A/B signals from feedback data from the following device:


• Absolute encoders

SIGNALS & PINS

Signal	J1
Encoder A	36
Encoder /A	21
Encoder B	35
Encoder /B	20
Encoder X	34
Encoder /X	19
Encoder S	33
Encoder /S	18
Signal Ground	6, 16, 22, 31, 37, 44
Frame Ground	1

CME2 DEFAULTS

These tables show the CME2 default settings. They are user-programmable and the settings can be saved to non-volatile flash memory.

Name	Configuration	PU/PD
IN1	Enable-LO, Clear Faults	
IN2		
IN3		+5V
IN4	Not Configured	+50
IN5		
IN6		
IN7		
IN8	Opto	
IN9	Not Configured	
IN10		
IN11	Not Configured	+5V PU

	Name	Notes
	OUT1	Fault Active-OFF
	OUT2	Nat Canfigured
	OUT3	Not Configured
ſ	OUT4	Brake Active-Off

Name	Notes
Analog: Reference Filter	Disabled
Vloop: Input Filter	Disabled
Vloop: Output Filter 1	Low Pass, Butterworth, 2-pole, 200 Hz
Vloop: Output Filter 2	Disabled
Vloop: Output Filter 3	Disabled
Iloop: Input Filter 1	Disabled
Iloop: Input Filter 2	Disabled
Input Shaping	Disabled

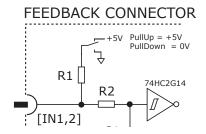
Notes	
Short Circuit	
Amp Over Temperature	
Motor Over Temp	
Over Voltage	
Under Voltage	
Motor Wiring Disconnected	
STO Active	

OPTIONAL FAULTS		
	Over Current (Latched)	

Home

Option	Notes	
Method	Set Current Position as Home	

HIGH SPEED INPUTS: IN1, IN2


- Digital, non-isolated, high-speed
- Programmable pull-up/pull-down
- 24V Compatible
- Programmable functions

SPECIFICATIONS

Input	Data	Notes
	HI	VT+ = 2.5~3.5 Vdc
	LO	VT- = 1.3~2.2 Vdc
Input Voltages	VH¹	VH = ±0.7~1.5 Vdc
	Max	+30 Vdc
	Min	0 Vdc
Pull-up/down	R1	15 kΩ
	R2	15 kΩ
Low pass filter	C1	100 pF
In much Comment	24V	1.3 mAdc
Input Current	0V	-0.33 mAdc
Time constant	RC ²	1.5 μs

CONNECTIONS

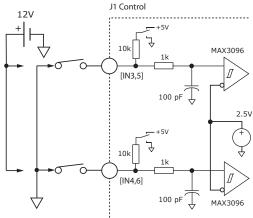
Input	Pin
IN1	J1-7
IN2	J1-8
Sgnd	J1-6, 16, 22, 31, 37, 44

Notes:

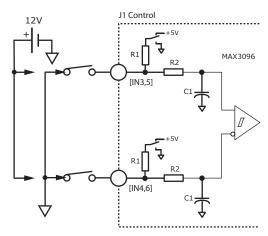
- 1) VH is hysteresis voltage
- (VT+) (VT-) 2) The R2*C2 time constant applies when input is driven by active HI/LO devices

SINGLE-ENDED/DIFFERENTIAL INPUTS: IN3, IN4, IN5, IN6

- · Digital, non-isolated, high-speed
- Progammable pull-up/pull-down
- 12V Compatible
- Single-ended or Differential
- Programmable functions


SPECIFICATIONS

Input	Data	Notes
	HI	Vin ≥ 2.7 Vdc
Input Voltages Single-ended	LO	Vin ≤ 2.3 Vdc
Single chaca	VH ¹	45 mVdc typ
Input Voltages Differential ³	HI	Vdiff ≥ +200 mVdc
	LO	Vdiff ≤ -200 mVdc
	VH	±45 mVdc typ
Common mode	Vcm	0 to +12 Vdc
Pull-up/down	R1	10 kΩ
Low page filter	R2	1 kΩ
Low pass filter	C1	100 pF
Time constant	RC ²	100 ns


Notes:

- 1) VH is hysteresis voltage IN2 - IN3 or IN12 - IN13
- 2) The R2*C2 time constant applies when input is driven by active HI/LO devices)
- 3) Vdiff = AINn(+) AINn(-)n = 1 for Axis A, 2 for Axis B

SINGLE-ENDED

DIFFERENTIAL

CONNECTIONS

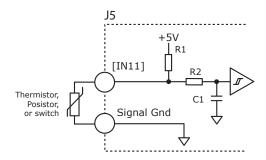
S.E.	DIFF	Pin
IN3	IN3+	J1-9
IN4	IN4-	J1-10
IN5	IN5+	J1-11
IN6	IN6-	J1-12
Sg	nd	J1-6, 16, 22, 31, 37 , 44

MOTOR OVERTEMP INPUT: IN11

- Digital, non-isolated
- Motor overtemp input
- 12V Compatible
- · Programmable functions

SPECIFICATIONS

Input	Data	Notes
Input Voltages	HI	Vin ≥ 3.5 Vdc
	LO	Vin ≤ 0.7 Vdc
	Max	+12 Vdc
	Min	0 Vdc
Pull-up/down	R1	4.99 kΩ
Townsh Commont	12V	1.4 mAdc
Input Current	0V	-1.0 mAdc
. CII	R2	10 kΩ
Low pass filter	C1	33 nF
Time constant	Te	330 μs *


* RC time constant applies when input is driven by active high/low device

CONNECTIONS

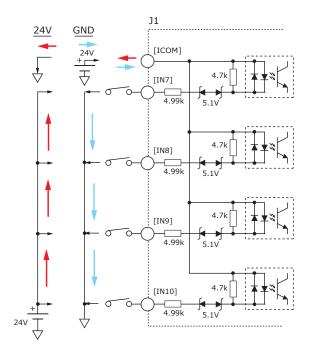
Input	Pin	
IN11	J6-7	
Sgnd	J6-5, 16, 25, 26	

MOTOR OVER TEMP INPUT

The 4.99k pull-up resistor works with PTC (positive temperature coefficient) thermistors that conform to BS 4999:Part 111:1987, or switches that open/close indicating a motor over-temperature condition. The active level is programmable.

BS 4999:Part 111:1987

Property	Ohms
Resistance in the temperature range 20°C to +70°C	60~750
Resistance at 85°C	≤1650
Resistance at 95°C	≥3990
Resistance at 105°C	≥12000


OPTO-ISOLATED INPUTS: IN7, IN8, IN9, IN10

- Digital, opto-isolated
- A group of four, with a common terminal
- Works with current sourcing or sinking drivers
- 24V Compatible
- Programmable functions

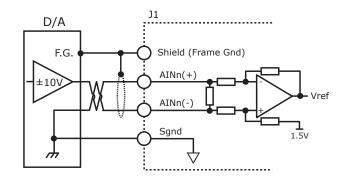
SPECIFICATIONS		
Input	Data	Notes
Input Voltages	HI	Vin ≥ ±10.0 Vdc *
	LO	Vin ≤ ±6 Vdc *
	Max	±30 Vdc *
January Community	±24V	±3.6 mAdc
Input Current	0V	0 mAdc

* Vdc Referenced to ICOM terminal.

CONNECTIONS	
Signal	J1 Pin
IN7	13
IN8	14
IN9	15
IN10	30
ICOM	28

ANALOG INPUT: AIN1

- ±10 Vdc, differential
- 12-bit resolution
- · Programmable functions

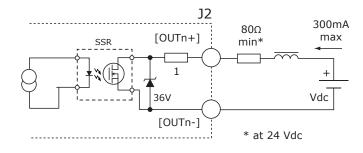

The analog input has a ± 10 Vdc range at 12-bit resolution As a reference input it take position/velocity/torque commands from a controller. If not used as a command input, it can be used as general-purpose analog input.

SPECIFICATIONS

Spec	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.05 kΩ

CONNECTIONS

Signal	Pins
AIN(+)	J1-3
AIN(-)	J1-2
Sgnd	J1-6, 16, 22, 31, 37, 44



OPTO-ISOLATED OUTPUTS: OUT1, OUT2, OUT3

- Digital, opto-isolated
- MOSFET output SSR, 2-terminal
- Flyback diode for inductive loads
- 24V Compatible
- Programmable functions

SPECIFICATIONS

Output	Data	Notes
ON Voltage OUT(+) - OUT(-)	Vdc	0.85V @ 300 mAdc
Output Current	Iout	300 mAdc max

CONNECTIONS

Signal	(+)	(-)
OUT1	J1-42	J1-27
OUT2	J1-41	J1-26
OUT3	J1-40	J1-25

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition
OUT1~3	HI	Output SSR is ON, current flows
0011~3	LO	Output SSR is OFF, no current flows

OPTO-ISOLATED MOTOR BRAKE OUTPUT: OUT4

- Brake output
- · Opto-isolated
- Flyback diode for inductive load
- 24V Compatible
- Connection for external 24V power supply
- Programmable functions

SPECIFICATIONS

Output	Data	Notes
Voltage Range	Max	+30 Vdc
Output Current	Ids	1.0 Adc

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition
BRAKE	HI	Output transistor is OFF Brake is un-powered and locks motor Motor cannot move Brake state is Active
[OUT4]	LO	Output transistor is ON Brake is powered, releasing motor Motor is free to move Brake state is NOT-Active

CME2 Default Setting for Brake Output [OUT4] is "Brake - Active HI" Active = Brake is holding motor shaft (i.e. the *Brake is Active*)

Motor cannot move

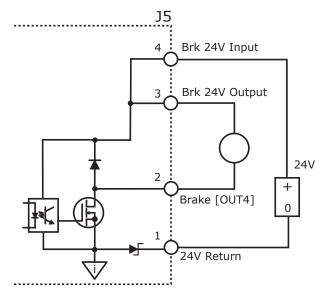
No current flows in coil of brake

CME2 I/O Line States shows Output 4 as HI

BRK Output voltage is HI (24V), MOSFET is OFF

Servo drive output current is zero

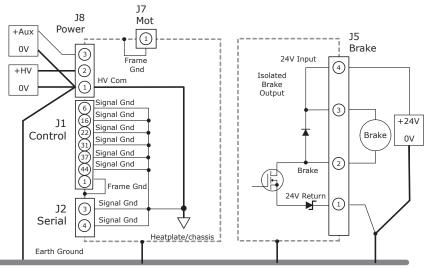
Servo drive is disabled, PWM outputs are off


Inactive = Brake is not holding motor shaft (i.e. the Brake is Inactive)

Motor can move

Current flows in coil of brake

CME2 I/O Line States shows Output 4 as LO BRK output voltage is LO (~0V), MOSFET is ON Servo drive is enabled, PWM outputs are on


Servo drive output current is flowing

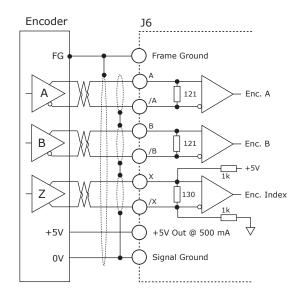
The brake circuits are optically isolated from all drive circuits and frame ground.

J5 CONNECTIONS

Pin	Signal
4	Brk 24V Input
3	Brk 24V Output
2	Brake [OUT4]
1	24V Return

connections to the drive that share a common ground in the driver. If the brake 24V power supply is separate from the DC supply powering the drive, it is important that it connects to an earth or common grounding point with the HV power supply.

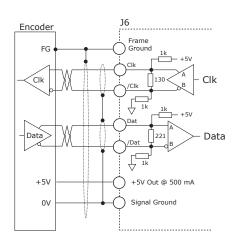
This diagram shows the


Earthing connections for power supplies should be as close as possible to elimimate potential differences between power supply OV terminals.

FEEDBACK CONNECTIONS

QUAD A/B ENCODER

Encoders with differential line-driver outputs are required (single-ended encoders are not supported) and provide incremental position feedback via the A/B signals and the optional index signal (X) gives a once per revolution position mark.

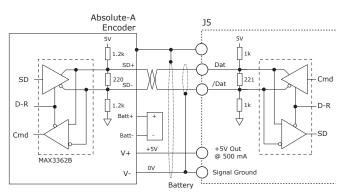

A/B/X SIGNALS

Signal	J6 Pins
Enc A	13
Enc /A	12
Enc B	11
Enc /B	10
Enc X	9
Enc /X	8
+5V	6, 17
Sgnd	5, 16, 25, 26
F.G.	1

Sgnd = Signal Ground F.G. = Frame Gnd

ENDAT ABSOLUTE ENCODER

The EnDat interface is a Heidenhain interface which is supported for the digital clock and data channels.


ENDAT SIGNALS

Signal	J6 Pins
Clk	9
/Clk	8
Data	15
/Data	14
+5V	6, 17
Sgnd	5, 16, 25, 26
F.G.	1

Sgnd = Signal Ground F.G. = Frame Gnd

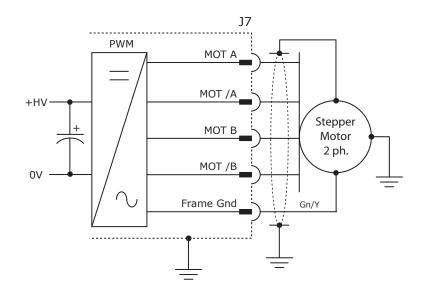
SANYO DENKI ABSOLUTE-A ENCODER

The Absolute A interface is a serial, half-duplex type that is electrically the same as RS-485. Note the battery which must be connected. Without it, the encoder will produce a fault condition.

ABSOLUTE-A SIGNALS

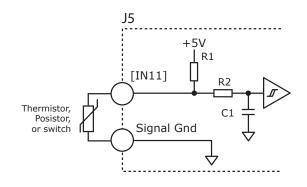
Signal	J6 Pins
Data	15
/Data	14
+5V	6, 17
Sgnd	5, 16, 25, 26
F.G.	1

Sgnd = Signal Ground F.G. = Frame Gnd


MOTOR CONNECTIONS

MOTOR PHASE CONNECTIONS

The drive output is two H-bridge PWM inverters that convert the DC buss voltage (+HV) into two sinusoidal voltage waveforms that drive the motor A & B phase coils. Cable should be sized for the continuous current rating of the motor. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive frame ground terminal (J7-1) for best results.


MOTOR SIGNALS

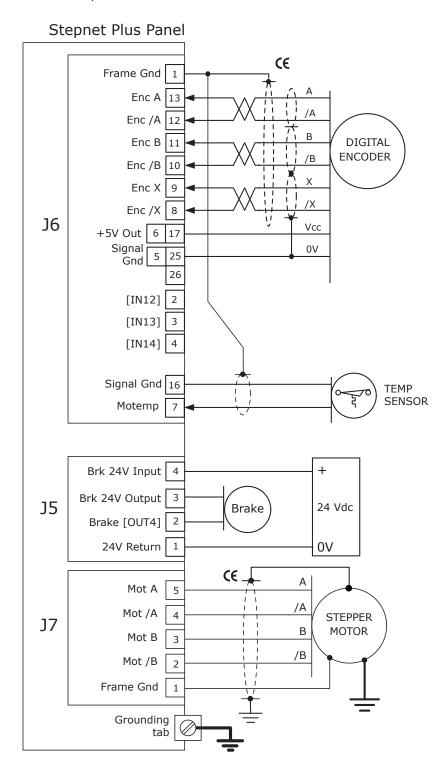
Signal	J7 Pin
Motor A	5
Motor /A	4
Motor B	3
Motor /B	2
Frame Gnd	1

MOTOR OVER TEMP INPUT

The 4.99k pull-up resistor works with PTC (positive temperature coefficient) thermistors that conform to BS 4999:Part 111:1987 (table TELow), or switches that open/close indicating a motor over-temperature condition. The active level is programmable. These inputs are programmable for other functions if not used as Motemp inputs. And, other inputs are programmable for the Motemp function.

MOTEMP SIGNALS

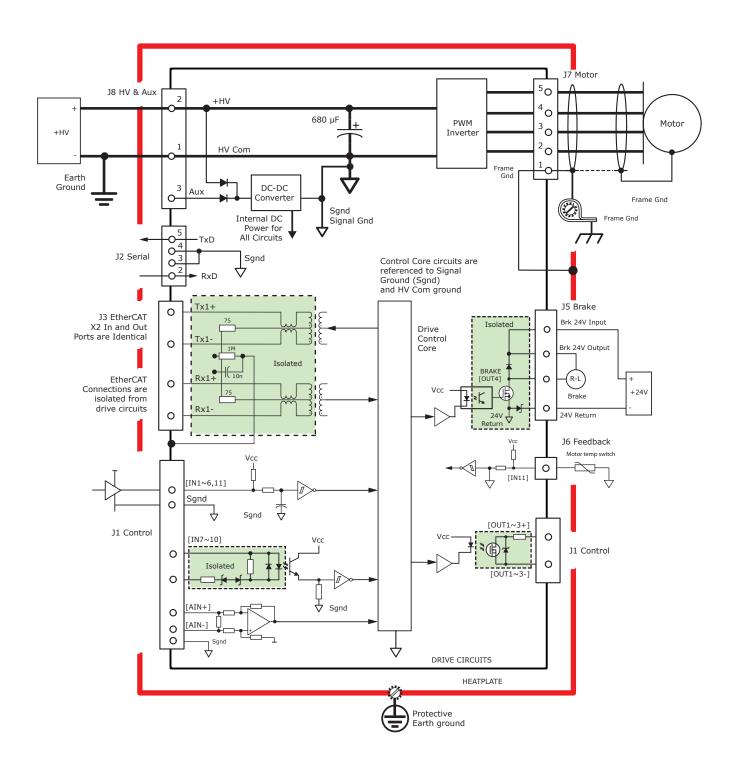
Signal	J6 Pins
Motemp	7
J6 Signal Ground	5,16,25,26
Frame Gnd	1


BS 4999 SENSOR

Property	Ohms
Resistance in the temperature range 20°C to +70°C	60~750
Resistance at 85°C	≤1650
Resistance at 95°C	≥3990
Resistance at 105°C	≥12000

MOTOR CONNECTIONS: DIGITAL OUAD A/B ENCODERS

The connections shown may not be used in all installations

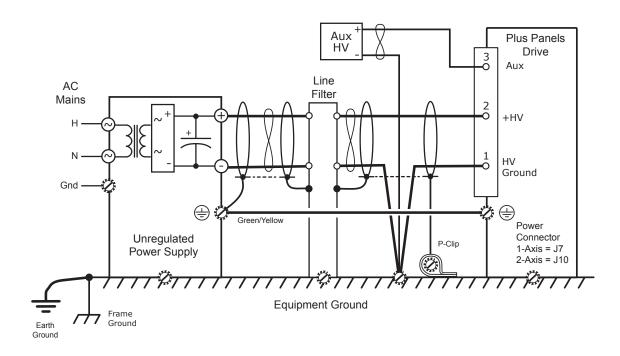

NOTES:

- 1) +5V Out on J1 & J6 connect to the same power supply. The sum of output currents is limited to 500 mA
- 2) CE symbols indicate connections required for CE compliance.

DEVICE STRUCTURE & ISOLATION

This graphic shows the electrical structure of the drive, detailing the elements that share a common circuit common (Signal Ground, HV Com) and circuits that are isolated and have no connection to internal circuits. Note that there is no connection between the heatplate (Chassis, Frame Ground) and any drive circuits.

POWER & GROUNDING CONNECTIONS


DC POWER CONNECTIONS

- DC power must be provided by transformers that are galvanically isolated and provide reinforced insulation from the mains.
 Auto-transformers cannot be used.
- The (-) terminal of the power supply is not grounded at the power supply. It is grounded near each drive.
- Cabling to multiple drives for the +HV and 0V is best done in a "star" configuration, and not a "daisy-chain".
- The OV, or return terminal of the DC power should be connected to frame ground near the drive power connector. From that point, a short wire can connect to the drive HV Ground.
- Cabling to the drive +HV and 0V terminals must be sized to carry the expected continuous current of the drive in the user's
 installation.
- DC power cabling should be shielded, twisted-pair for best EMI reduction. The shield should connect to the power supply frame
 ground on one end, and to the drive frame ground on the other. Adding a pigtail and ring-lug, as short as possible will provide a
 good connection of the shield at the drive.
- Motor cabling typically includes a green/yellow conductor for protective bonding of the motor frame. Connect as shown in the Motor Connections diagram on the following page.
- Motor cable conductors should be twisted and shielded for best EMI suppression.
- If a green/yellow grounding wire connects the motor to the drive's PE terminal, the shield pigtail and ring-lug may connect to one of the screws that mount the drive to the panel. A P-clip to ground the shield as near as possible to the drive will increase the EMI suppression of the shield. On the motor-end, the shield frequently connects to the connector shell. If the motor cable is a flying-lead from the motor, the shield may be connected to the motor frame internally.
- Braided cable shields are more effective for EMI reduction than foil shields. Double-shielded cables typically have a braided outer shield and foil shields for the internal twisted pairs. This combination is effective for both EMI reduction and signal quality of the feedback signals from analog encoders or resolvers.
- Motor cable shielding is not intended to be a protective bonding conductor unless otherwise specified by the motor manufacturer.
- For feedback cables, double-shielded cable with a single outer shield and individual shielded twisted pair internal shields gives the best results with resolvers, or analog sin/cos encoders.
- In double-shielded cables, the internal shielding should connect to the drive's Signal Ground on one end, and should be unconnected on the motor end.
- Single-shield feedback cables connect to the drive frame on one end, and to the motor frame on the other.

 Depending on the construction of the motor, leaving the feedback cable shield disconnected on the motor but connected on the drive end may give better results.
- The drive should be secured to the equipment frame or panels using the mounting slots. This ensures a good electrical connection for optimal EMI performance. The drive chassis is electrically conductive.

DC POWER WIRING

P-clips secure cables to a panel and provide full contact to the cable shields after the insulation has been stripped. This should be done as close to the drive as possible for best EMI attenuation.

+HV POWER SUPPLY REQUIREMENTS

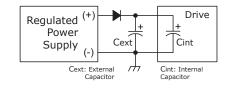
Regulated Power Supplies

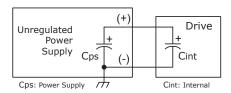
- Must be over-voltage protected to 100 Vdc max when the STO (Safe Torque Off) feature of the drive is used.
- Require a diode and external capacitor to absorb regenerative energy.
- The VA rating should be greater than the actual continuous output power of the drives connected to the power supply, and adequate for the transient output power due to acceleration of motor loads.
- Must handle the internal capacitance of the drives on startup.

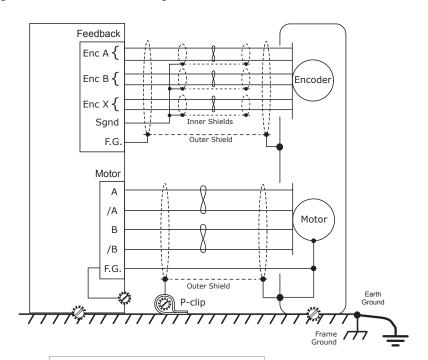
Unregulated Power Supplies

- No-load, high-line output voltage must not exceed 90 Vdc.
- Power supply internal capacitance adds to the drive's internal capacitance for absorption of regenerative energy.
- The VA (Volts & Amps) rating at the power supply's AC input is typically 30~40% greater than the total output power of the drives.

AUXILIARY HV POWER

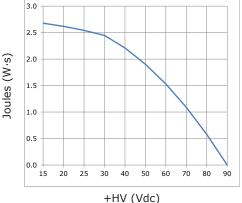

- Aux HV is power that can keep the drive communications and feedback circuits active
 when the PWM output stage has been disabled by removing the main +HV supply.
- Useful during EMO (Emergency Off) conditions where the +HV supply must be removed from the drive and powered-down to ensure operator safety.
- Voltage range is the same as +HV.
- Powers the DC/DC converter that supplies operating voltages to the drive DSP and control circuits.
- Aux HV draws no current when the +HV voltage is greater than the Aux HV voltage.


MOTOR CONNECTIONS


- Motor cable shield connects to motor frame, is grounded with a P-clip near the drive and terminates in a ring-lug that is screwed to the drive chassis by a mounting screw to the panel
- If provided, a green/yellow grounding wire from the motor connects to the F.G. terminal of the motor connector.

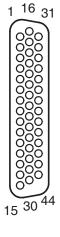
FEEDBACK CONNECTIONS

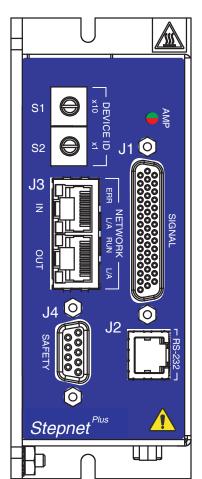
- Cable shield connects to motor frame and to the F.G. terminal of the feedback connector.
- When double-shielding is used, the inner shields connect to the Signal Ground at the drive, and is not connected at the motor end.
- If not provided by the motor manufacturer, feedback cables rated for RS-422 communications are recommended for digital encoders.



REGENERATION

This chart shows the energy absorption in W·s for the drive operating at some typical DC voltages. It is based on the internal 680 uF capacitor and would be increased by the capacitance of the external DC power supply. When the load mechanical energy is greater than these values an external regenerative energy dissipater is required, or the DC power supply capacitance can be increased to absorb the regenenergy.





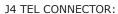
CONNECTORS & SIGNALS: CONTROL & STO

J1: CONTROL SIGNALS

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	16	16 Signal Gnd		Signal Gnd
2	[AIN1-]	17	+5Vout	32	+5Vout
3	[AIN1+]	18	MultiEnc /S	33	MultiEnc S
4	N/C	19	MultiEnc /X	34	MultiEnc X
5	N/C	20	MultiEnc /B	35	MultiEnc B
6	Signal Gnd	21	MultiEnc /A	36	MultiEnc A
7	[IN1]	22	Signal Gnd	37	Signal Gnd
8	[IN2]	23	N/C	38	N/C
9	[IN3] Diff1(+)	24	N/C	39	N/C
10	[IN4] Diff1(-)	25	[OUT3-]	40	[OUT3+]
11	[IN5] Diff2(+)	26	[OUT2-]	41	[OUT2+]
12	[IN6] Diff2(-)	27	[OUT1-]	42	[OUT1+]
13	[IN7]	28	[ICOM]	43	N/C
14	[IN8]	29	N/C	44	Signal Gnd
15	[IN9]	30	[IN10]		·

J1: TEL CONNECTOR

High-Density HDsub DB-44F, female receptacle, 44 Position


J1: CABLE CONNECTOR

High-Density HDsub DB-44M, male plug, 44 Position

J4 SAFETY (SAFE TORQUE OFF)

CONNECTIONS

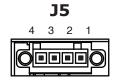
PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	6	STO-1(+)
2	STO-1(+)	7	STO-1(-)
3	STO-1(-)	8	STO-24V
4	STO-2(+)	9	STO-GND
5	STO-2(-)		

Dsub DB-09F, 9 position female receptacle

J4 CABLE CONNECTOR:

Poke and crimp Dsub DB -09M, 9 position

Details on J1, J4, & J6 cable connectors can be found in the TEL-CK listing under the Accessories section of the last page


copley Stepnet Plus Panel EtherCAT

CONNECTORS & SIGNALS: BRAKE, FEEDBACK, MOTOR, & POWER

J5: BRAKE

Pin	Signal
4	Brk 24V Input
3	Brk 24V Output
2	Brake A [OUT4]
1	24V Return

J5: TEL CONNECTOR

Euro-style 3.5 mm male receptacle, 4-position Wago: MCS-MINI, 734-164/108-000

J5: CABLE CONNECTOR Wago MCS-MINI 734-104/107-000 or 734-105/107-000

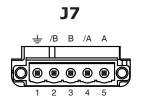
WAGO CONNECTOR TOOL

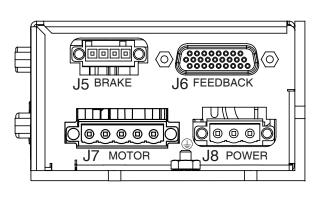
Contact opener: 734-231 operating tool

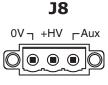
26 18

J6: FEEDBACK

		PIN	SIGNAL
PIN	SIGNAL	18	Sin(-)
26	Signal Gnd	17	+5VOut
25	Signal Gnd	16	Signal Gnd
24	N/C	15	Enc S
23	N/C	14	Enc /S
22	N/C	13	Enc A
21	Cos(+)	12	Enc /A
20	Cos(-)	11	Enc B
19	Sin(+)	10	Enc /B


PIN	SIGNAL
9	Enc X
8	Enc /X
7	[IN11] Motemp
6	+5VOut
5	Signal Gnd
4	[IN14]
3	[IN13]
2	[IN12]
1	Frame Gnd


J6: MOTOR FEEDBACK


J6

J6: TEL CONNECTOR High-Density HDsub DB-26F, female receptacle, 26 Position

J6: CABLE CONNECTOR High-Density HDsub DB-26M, male plug, 26 Position

J7: MOTOR OUTPUT

Signal	Pin
Motor A	5
Motor /A	4
Motor B	3
Motor /B	2
Frame Ground	1

J7: DRIVE CONNECTORS

Euro-style 5.08 mm male receptacle, 4-position Wago: MCS-MIDI, 231-565/108-000

J7 CABLE CONNECTORS

Wago MCS-MIDI Classic 231-305/107-000

WAGO CONNECTOR TOOL Contact opener: 231-159 operating tool

J8:+HV & AUX POWER

Signal	Pin
Aux HV	3
HV	2
HV Ground	1

J8: DRIVE CONNECTOR

Euro-style 5.08 mm male receptacle, 3-position Wago: MCS-MIDI, 231-563/108-000

J8: CABLE CONNECTOR Wago MCS-MIDI, 231-303/107-000

WAGO CONNECTOR TOOL Contact opener: 231-159 operating tool

Stepnet Plus Panel EtherCAT

WIRING

24V & BRAKE: J5

Wago MCS-MINI: 734-104/107-000, female connector; with screw flange; 4-pole; pin spacing 3.5 mm / 0.138 in

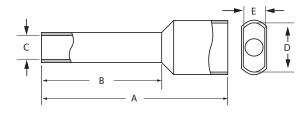
Conductor capacity

Bare stranded: AWG 28~16 [0.08~1.5 mm2] Insulated ferrule: AWG 24~16 [0.25~1.5 mm2] Stripping length: 0.24~0.28 in[6~7 mm] Operating tool: Wago MCS-MINI: 734-231

24V & Brake

J5

FERRULE PART NUMBERS: SINGLE WIRE INSULATED


AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	Е	SL
18	1.0	Red	Wago	216-223	12.0 (.47)	6.0 (.24)	1.4 (.06)	3.0 (.12)	3.5 (.14)	8 (.31)
20	0.75	Gray	Wago	216-222	12.0 (.47)	6.0 (.24)	1.2 (.05)	2.8 (.11)	3.3 (.13)	8 (.31)
22	0.5	White	Wago	216-221	12.0 (.47)	6.0 (.24)	1.0 (.04)	2.6 (.10)	3.1 (.12)	7.5 (.30)

FERRULE PART NUMBERS: DOUBLE WIRE INSULATED

AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	E	SL
2 x 18	2 x 1.0	Red	Altech	2776.0	15.4 (.61)	8.2 [.32]	2.4 (.09)	3.2 (.13)	5.8 (.23)	11.0 (.43)
2 x 18	2 x 1.0	Gray	Altech	2775.0	14.6 (.57)	8.2 (.32)	2.0 (.08)	3.0 (.12)	5.5 (.22)	11.0 (.43)
2 x 20	2 x 0.75	White	Altech	2794.0	14.6 (.57)	8.2 (.32)	1.7 (.07)	3.0 (.12)	5.0 (.20)	11.0 (.43)
2 x 20	2 x 0.75	Gray	TE	966144-2	15.0 (.59)	8.0 (.31)	1.70 (.07)	2.8 (.11)	5.0 (.20)	10 (.39)
2 x 22	2 x 0.50	White	TE	966144-1	15.0 (.59)	8.0 (.31)	1.40 (.06)	2.5 (.10)	4.7 (.19)	10 (.39)

NOTES

PNUM = Part Number SL = Stripping length Dimensions: mm (in)

HV/AUX POWER AND MOTOR OUTPUTS: J7 & J8

Wago MCS-MIDI Classic: 231-305/107-000 (J7), 231-303/107-000 (J8); with screw flange; 3-pole; pin spacing 5.08 mm / 0.2 in

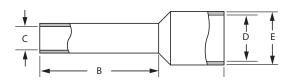
Conductor capacity Bare stranded:

AWG 28~14 [0.08~2.5 mm2] Insulated ferrule: AWG 24~16 [0.25~1.5 mm2]

8~9 mm Stripping length:

Operating Tool: Wago MCS-MIDI Classic: 231-159

Motor J7


Tool

FERRULE PART NUMBERS: SINGLE WIRE INSULATED

AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	E	SL
14	2.5	Blue	Wago	216-206	15.0 (0.59)	8.0 (0.31)	2.05 (.08)	4.2 (0.17)	4.8 (0.19)	10 (0.39)
16	1.5	Black	Wago	216-204	14.0 (0.59	8.0 (0.31)	1.7 (.07)	3.5 (0.14)	4.0 (0.16)	10 (0.39)
18	1.0	Red	Wago	216-223	12.0 (.47)	6.0 (.24)	1.4 (.055)	3.0 (.12)	3.5 (.14)	8 (.31)
20	0.75	Gray	Wago	216-222	12.0 (.47)	6.0 (.24)	1.2 (.047)	2.8 (.11)	3.3 (.13)	8 (.31)
22	0.5	White	Wago	216-221	12.0 (.47)	6.0 (.24)	1.0 (.039)	2.6 (.10)	3.1 (.12)	7.5 (.30)

NOTES

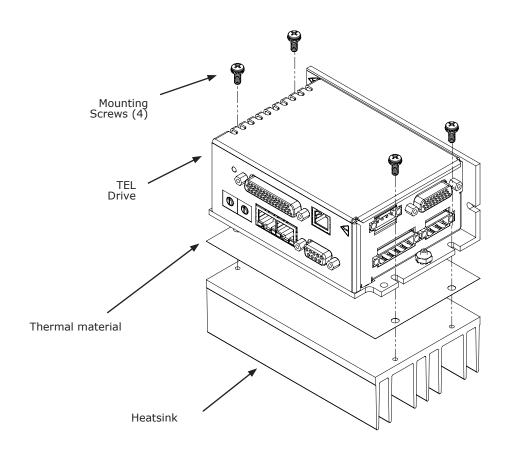
PNUM = Part Number SL = Stripping length Dimensions: mm (in)

HEATSINK KIT INSTALLATION

- STANDARD HEATSINK FOR STEPNET PLUS PANEL TEL
- COMPLETE KIT FOR USER INSTALLATION OF THE HEATSINK

DESCRIPTION

The TEL-HK is a kit containing a heatsink and mounting hardware for field installation of a standard heatsink onto a TEL model servo drive.


To order an TEL drive with heatsink fitted at the factory, add "-H" to the model part number.

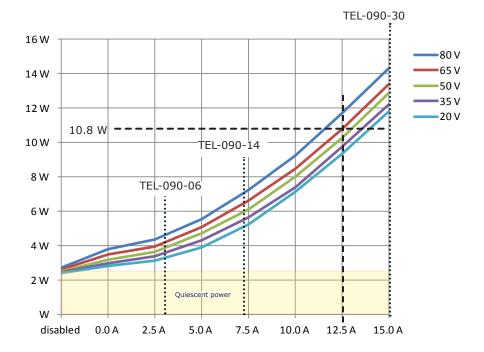
HEATSINK KIT PART LIST

Qty	Description			
1	Heatsink, standard, TEL-HS			
1	Thermal pad, 4x4 in.			
	Kit, Heatsink Hardware, TEL			
1	4	Washer, flat, #8		
	4	Screw, PAN, SEMS, #8-32 x 1/2 in		

INSTALLATION

- 1) Place the heatsink fins-down on a work surface. Orient the heatsink so that the edge with part number is away from you. The hole for the TEL grounding lug should be to your left.
- 2) Remove the clear protective film from the thermal material and discard it. Place the thermal material onto the heatsink in the placement area which is marked with four white "L". Apply light pressure to ensure that the thermal material is flat.
- 3) Peel the white protective layer away from the thermal material. Do this slowly from one corner so as not to lift the thermal material from the heatsink.
- 4) Align the TEL as shown and lower onto the heatsink. If needed to adjust the position, lift it away from the thermal material and lower onto the heatsink again.
- 5) Install the four mounting screws with flat washers and tighten evenly. Torque to 17.8 lb-in (2.0 Nm) maximum.

THERMALS: POWER DISSIPATION


The top chart on this page shows the internal power dissipation of the TEL under differing power supply and output current conditions. The +HV values are for the average DC voltage of the drive power supply. The lower chart shows the temperature rise vs. power dissipation under differing mounting and cooling conditions.

POWER DISSIPATION

Use this chart to find the Watts dissipation.

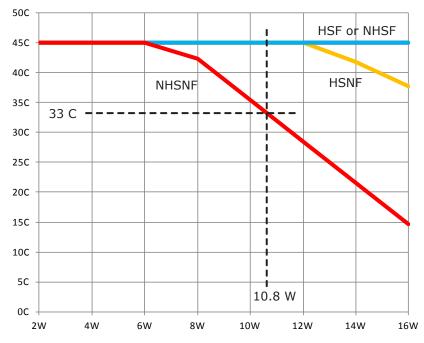
The vertical dashed lines show the continuous currents for the three TEL models.

Example TEL-090-30: Power supply HV = 65 Vdc Current = 12.5A Power dissipation= 10.8 W

THERMALS: MAXIMUM OPERATING TEMPERATURE VS. DISSIPATION

Use this chart to find the maximum operating temperature of the drive under differing mounting and cooling conditions.

Example:


Using the 10.8 W value from the calculations above, draw a vertical line. This shows that 33 C is the maximum operating temperature for NHSNF. But HSFNF, NHSF, or HSF mountings allow operation to 45 C maximum ambient.

HSF = Heat Sink (with) Fan

NHSF = No Heat Sink (with) Fan

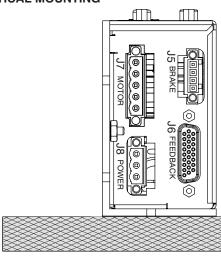
HSNF = Heat Sink No Fan

NHSNF = No Heat Sink No Fan

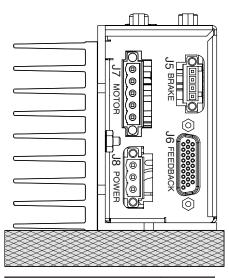
Internal power dissipation (Watts)

THERMALS: MOUNTING & THERMAL RESISTANCE

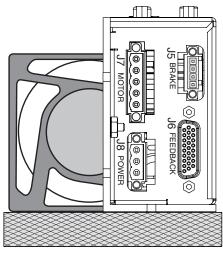
MOUNTING

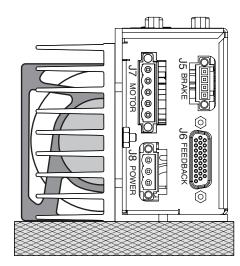

Thermal data for convection-cooling with a heatsink assumes a vertical mounting of the drive on a thermally non-conducting surface. Heatsink fins run parallel to the long axis of the drive. When fan-cooling is used vertical mounting is not necessary to guarantee thermal performance of the heatsink.

THERMAL RESISTANCE


Thermal resistance is a measure of the temperature rise of the drive heatplate due to power dissipation in the drive. It is expressed in units of $^{\circ}C/W$ where the degrees are the temperature rise above ambient.

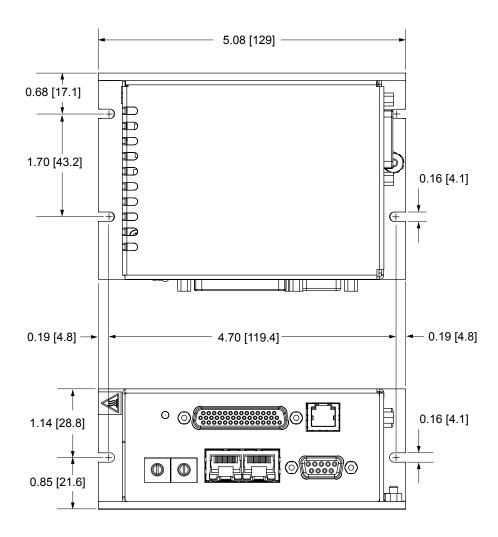
E.g., a drive dissipating 13 W mounted with no heatsink or fan would see a temperature rise of 45 °C above ambient based on the thermal resistance of 3.46 °C/W. Using the drive maximum heatplate temperature of 70 °C and subtracting 46 °C from that would give 24 °C as the maximum ambient temperature the drive in which the drive could operate before going into thermal shutdown. To operate at higher ambient temperatures a heatsink or forced-air would be required.

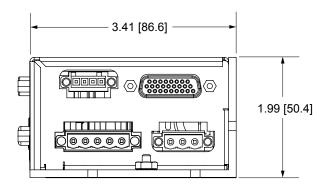

END VIEWS VERTICAL MOUNTING


NO HEATSINK, NO FAN	°C/W	
CONVECTION	3.46	

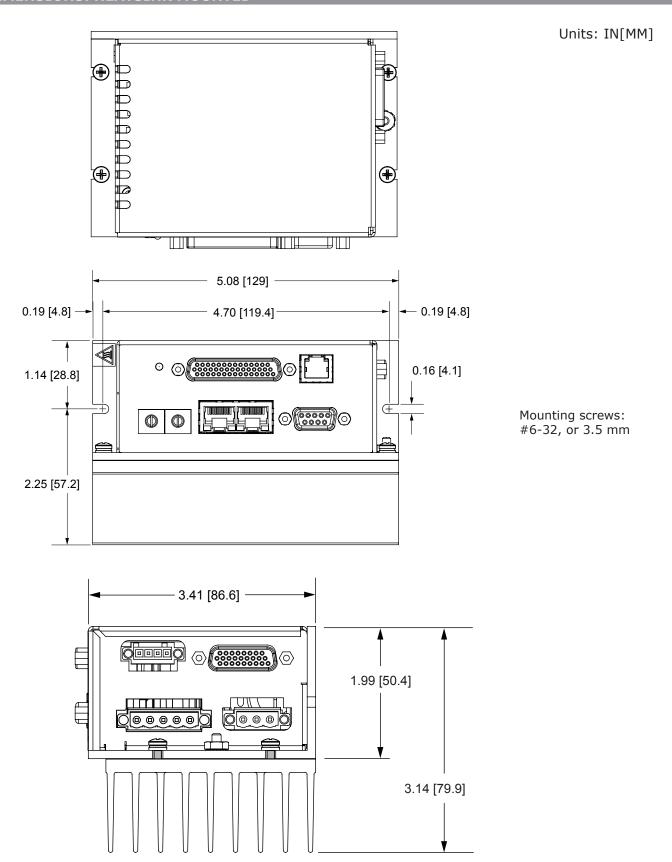
HEATSINK, NO FAN	°C/W
CONVECTION	2.02

NO HEATSINK + FAN	°C/W
FORCED-AIR, 300 LFM	1.32




HEATSINK + FAN	°C/W
FORCED-AIR, 300 LFM	0.91

DIMENSIONS: NO HEATSINK


Units: IN[MM]

DIMENSIONS: HEATSINK MOUNTED

MASTER ORDERING GUIDE

TEL-090-07	Stepnet Plus Panel EtherCAT stepper drive, 5/7 A, 90 Vdc
TEL-090-10	Stepnet Plus Panel EtherCAT stepper drive, 10/10 A, 90 Vdc

Add -H to model number for heatsink installed at the factory (Example: TEL-090-10-H)

Example: Order one Stepnet Plus TEL drive, 10/10 A, with connector Kit, serial cable kit and heatsink fitted at the factory: Oty Item Remarks

TEL-090-10-R-H L TEL-CK Stepnet Plus TEL servo drive with resolver, and heatsink TEL Connector Kit

1 TEL-CK 1 TEL-SK

Serial Cable Kit

ACCESSORIES

İ	Qty	Ref	Name	Description	Manufacturer P/N	
	1	J8	DC HV	Plug, 3 position, 5.08 mm, female	Wago: 231-303/107-000 (Note 1)	
	1	10	DC HV	Strain relief, snap-on, 5.08 mm, 3 position, orange	Wago: 232-633	
	1	17	Motor	Plug, 5 position, 5.08 mm, female	Wago: 231-305/107-000 (Note 1)	
	1	J/		Strain relief, snap-on, 5.08 mm, 4 position, orange	Wago: 232-635	
	1	J7, J8	Tool	Tool, wire insertion & extraction, 231 series	Wago: 231-159	
	1	J5	Brake	Plug, 4 position, 3.5 mm, female	Wago: 734-104/107-000 (Note 1)	
	1			Strain relief, snap-on, 3.5 mm, 4 position, grey	Wago: 734-604	
TEL-CK	1		Tool	Tool, wire insertion & extraction, 734 series	Wago: 734-231	
Connector Kit	1	J4 Note 2	Safety	Connector, DB-9M, 9-position, standard, male	TE/AMP: 205204-4	
	9			AMPLIMITE HD-20 Crimp-Snap contacts, 24-20AWG, AU flash	TE/AMP: 66506-9	
	1			Metal Backshell, DB-9, RoHS	3M: 3357-9209	
	4			Jumper, with pins crimped on both ends	Copley: 10-75177-01	
	1	J1 Control		Connector, high-density DB-44M, 44 position, male, solder cup	Norcomp: 180-044-103L001	
	1	JI	Control	Metal Backshell, DB-25, RoHS	3M: 3357-9225	
	1	Teed-		Connector, high-density DB-26M, 26 position, male, solder cup	Norcomp: 180-026-103L001	
	1	Ј6	back	Metal Backshell, DB-15, RoHS	3M: 3357-9215	
SER-CK	1	J2	RS-232	Serial Cable Kit		
TEL-NC-10	1	J3 Network		EtherCAT® network cable, 10 ft (3 m)		
TEL-NC-01	1			EtherCAT® network cable, 1 ft (0.3 m)		

Note 1: For RoHS compliance, append "/RN01-0000" to the Wago part numbers listed above

Note 2: Insertion/extraction tool for J4 contacts is AMP/Tyco 91067-2 (not included in TEL-CK)

16-01442 Document Revision History

Revision	Date	Remarks
00	February 17, 2017	Initial released version

EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Note: Specifications subject to change without notice