DIGITAL SERVO DRIVE FOR BRUSH \& BRUSHLESS MOTORS

CONTROL MODES

- Profile Position-Velocity-Torque, Interpolated Position, Homing
- Camming, Gearing
- Indexer

COMMAND INTERFACE

- CANopen
- ASCII and discrete I/O
- Stepper commands
- $\pm 10 \mathrm{~V}$ position/velocity/torque
- PWM velocity/torque command
- Master encoder (Gearing/Camming)

COMMUNICATIONS

- CANopen DS-402
- RS-232

FEEDBACK
Incremental Encoders

- Digital quad A / B

Analog Sin/Cos
Panasonic Incremental A Format

- Aux. quad A/B encoder / encoder out

Absolute Encoders

- SSI, EnDat, Absolute A, Tamagawa \& Panasonic Absolute A Sanyo Denki Absolute A, BiSS (B \& C)
Other
- Digital Halls

I/O DIGITAL

- 8 High-speed inputs
- 2 Motor over-temp inputs
- 8 Opto-Isolated inputs
- 5 Opto-Isolated outputs
- 2 Opto-Isolated brake outputs

ANALOG

- 2 Reference Inputs, 12-bit

SAFE TORQUE OFF (STO)

- SIL 3, Category 3, PL d

DIMENSIONS: IN [MM]

- $6.78 \times 4.70 \times 1.74$ [172.1 $\times 119.3 \times 44.1]$ no heatsink
- $6.78 \times 4.70 \times 3.14$ [172.1 $\times 119.3 \times 79.8$] with heatsink

DESCRIPTION

The BP2 is a high-performance, DC powered drive for position, velocity, and torque control of brushless and brush motors via CANopen. Drive commissioning is fast and simple using CME $2^{\text {TM }}$ software operating under Windows ${ }^{\circledR}$ and communicating with the BP2 via RS-232.
The BP2 operates as a CANopen DS-402 node. Supported modes include: Profile Position-Velocity-Torque, Interpolated Position Mode (PVT), and Homing.
Feedback from both incremental and absolute encoders is supported. A multi-mode encoder port functions as an input or output depending on the drive's basic setup. As an input it takes feedback from a secondary encoder to create a dual-loop position control system or as a master encoder for driving a cam table. As an output, it buffers the digital encoder signals from the motor's digital encoder and eliminates split cables that would be needed to send the signals to both drive and control system.

There are ten non-isolated inputs. Eight opto-isolated digital inputs are bipolar types that source or sink current into a common connection that can be tied to ground or +24 V . [IN1\&10] default to the drive Enable function for axes $A \& B$, and are programmable to other functions. The other inputs are programmable. All inputs have programmable active levels. Five opto-isolated outputs [OUT1~5] have individual collector/emitter connections. Two MOSFET outputs [OUT6~7] are programmable to drive motor brakes or other functions.
Drive power is transformer-isolated DC from regulated or unregulated power supplies. An AuxHV input is provided for "keep-alive" operation permitting the drive power stage to be completely powered down without losing position information, or communications with the control system.

GENERAL SPECIFICATIONS

Test conditions: Load $=$ Wye connected load: $2 \mathrm{mH}+2 \Omega$ line-line. Ambient temperature $=25^{\circ} \mathrm{C},+\mathrm{HV}=\mathrm{HV}$

NOTES:

1) Heatsink or forced-air required for continuous current rating

2-Axis Panel CANopen

GENERAL SPECIFICATIONS

DC POWER OUTPUTS
Number: Ratings
Connections

2: +5 Vdc, 500 mA max each output, thermal and short-circuit protected Axis A: J1-17, J1-32, J7-6, J7-17; combined current from these pins cannot exceed 500 mA Axis B: J1-23, J1-38, J8-6, J8-17; combined current from these pins cannot exceed 500 mA
INDICATORS
AMP

AMP
L/A, RUN, ERR

Bicolor LED, drive status indicated by color, and blinking or non-blinking condition
Yellow \& green LED on A \& B ports, status of CANopen bus indicated by color and blink codes based on CANopen Indicator Specification V0.91
Green LED: ON = Good Link, Blinking = Activity, OFF = No Link Yellow LED: ON for Full-Duplex, OFF for Half-Duplex

PROTECTIONS

HV Overvoltage
HV Undervoltage
Drive over temperature
Short circuits
$\mathrm{I}^{2} \mathrm{~T}$ Current limiting
Motor over temperature
Feedback Loss
MECHANICAL \& ENVIRONMENTAL
Size IN [MM]
Weight LB[KG]
Ambient temperature
Humidity
Vibration
Shock
Contaminants
Environment
Cooling
$+\mathrm{HV}>90 \mathrm{Vdc} \quad$ Drive outputs turn off until $+\mathrm{HV}<90 \mathrm{Vdc}$ (See Input Power for $\mathrm{HV}_{\max }$)
$+\mathrm{HV}<+14 \mathrm{Vdc} \quad$ Drive outputs turn off until $+\mathrm{HV}>+14 \mathrm{Vdc}$
Heat plate $>70^{\circ} \mathrm{C}$. Drive outputs turn off
Output to output, output to ground, internal PWM bridge faults
Programmable: continuous current, peak current, peak time
Digital inputs programmable to detect motor temperature switch
Inadequate analog encoder amplitude or missing incremental encoder signals
$6.78 \times 4.70 \times 1.74[172.1 \times 119.3 \times 44.1]$ without heatsink
$6.78 \times 4.70 \times 3.14$ [172.1 $\times 119.3 \times 79.8]$ with heatsink
1.5 [0.68] without heatsink, 2.75 [1.25] with heatsink

0 to +45 C operating, -40 to +85 C storage
0 to 95\%, non-condensing
2 g peak, $10 \sim 500 \mathrm{~Hz}$ (sine), IEC60068-2-6
$10 \mathrm{~g}, 10 \mathrm{~ms}$, half-sine pulse, IEC60068-2-27
Pollution degree 2
IEC68-2
Heat sink and/or forced air cooling required for continuous power output

AGENCY STANDARDS CONFORMANCE
Standards and Directives
Functional Safety
IEC 61508-1, IEC 61508-2, IEC 61508-3, IEC 61508-4 (SIL 3)
Directive 2006/42/EC (Machinery)
ISO 13849-1/Cor. 1:2009 (Cat 3, PL d)
IEC 61800-5-2 (SIL3)
Product Safety
Directive 2014/35/EU (Low Voltage)
IEC 61800-5-1
EMC Directive 2014/30/EU (EMC)
IEC 61800-3
Restriction of the Use of Certain Hazardous Substances (RoHS)
Directive 2011/65/EU (RoHS II)
Approvals
UL and CUL recognized component to:
UL 61800-5-1, 1st Ed.
TÜV SÜD Functional Safety to:
IEC 61508-1, IEC 61508-2, IEC 61508-3, IEC 61508-4 (SIL 3)
ISO 13849-1/Cor. 1:2009 (Cat 3, PL d)

Refer to the 16-01338 AcceInet \& Stepnet Plus Panels STO Manual for further details
The information provided in the 16-01338 Accelnet \& Stepnet Plus Panels STO Manual must be considered for any application using the BP2 drive's STO feature.
FAILURE TO HEED THIS WARNING CAN CAUSE EQUIPMENT DAMAGE, INJURY, OR DEATH.

FEEDBACK: BP2 MODELS

FEEDBACK

Incremental:
Digital Incremental Encoder Quadrature signals, ($A, / A, B, / B, X, / X$), differential ($X, / X$ Index signals not required)
5 MHz maximum line frequency (20 M counts/sec)
MAX3097 differential line receiver with 121Ω terminating resistor between complementary inputs

Analog Incremental Encoder
Analog Index signal Panasonic Incremental A Format Sanyo Denki Wire-saving Incremental

Absolute: \quad Serial encoders may connect to the feedback connectors or the multi-port

Two serial encoders are the maximum allowed
Two serial encoders on one axis are not supported
Absolute:
SSI Clock ($\mathrm{X}, / \mathrm{X}$), Data (S, /S) signals, 4-wire, clock output from BP2, data returned from encoder
EnDAT Clock ($\mathrm{X}, / \mathrm{X}$), Data ($\mathrm{S}, / \mathrm{S}$), \sin / \cos ($\sin +$, sin-, cos+, cos-) signals
Absolute A, Tamagawa Absolute A, Panasonic Absolute A Format, Sanyo Denki Absolute A
SD+, SD- (S, /S) signals, 2.5 or $4 \mathrm{MHz}, 2$-wire half-duplex communication
Position feedback: 13-bit resolution per rev, 16 bit revolution counter (29 bit absolute position data)
Status data for encoder operating conditions and errors
MA+, MA- $(X, / X)$, SL+, SL- (S, /S) signals, 4-wire, clock output from BP2, data returned from encoder

DIGITAL HALLS

Type Digital, single-ended, 120° electrical phase difference between U-V-W signals,
Schmitt trigger, $1 \mu \mathrm{~s}$ RC filter, 24 Vdc compatible, programmable pull-up/down to $+5 \mathrm{Vdc} / \mathrm{ground}$,
$\mathrm{Vt}+=2.5 \sim 3.5 \mathrm{Vdc}, \mathrm{VT}-=1.3 \sim 2.2 \mathrm{Vdc}, \mathrm{VH}=0.7 \sim 1.5 \mathrm{Vdc}$
Inputs
$10 \mathrm{k} \Omega$ pullups to $+5 \mathrm{Vdc}, 1 \mu \mathrm{~s}$ RC filter to Schmitt trigger inverters
MULTI-MODE ENCODER PORT
As Input

As Emulated Output

As Buffered Output
ENCODER POWER SUPPLIES
Number: Ratings
Connections

Digital quadrature encoder (A, /A, B, /B, X, /X), 121Ω terminating resistors between A \& $/ A, B$ \& /B inputs 18 M -counts/sec, post-quadrature (4.5 M-lines/sec)
Digital absolute encoder (Clk, /CIk, Dat, /Dat) half or full-duplex operation, 121Ω terminating resistors
Quadrature encoder emulation with programmable resolution to 4096 lines (65,536 counts) per rev from analog sin / \cos encoders
A, /A, B, /B, outputs from MAX3032 differential line driver, X, /X, S, /S outputs from MAC3362 drivers
Digital encoder feedback signals from primary digital encoder are buffered by MAX3032 line driver
2: $+5 \mathrm{Vdc}, 500 \mathrm{~mA}$ max each output, thermal and short-circuit protected
Axis A: J1-17, J1-32, J7-6, J7-17; combined current from these pins cannot exceed 500 mA
Axis B: J1-23, J1-38, J8-6, J8-17; combined current from these pins cannot exceed 500 mA

FEEDBACK: BP2-R MODELS

RESOLVER
Type
Resolution
Reference frequency
Reference voltage
Reference maximum current
Maximum RPM
Sin/Cos inputs
Type

Inputs
MULTI-MODE ENCODER PORT
As Input

As Emulated Output
ENCODER POWER SUPPLIES
Number: Ratings
Connections

HALLS
 DIGITAL HALLS

Brushless, single-speed, 1:1 to 2:1 programmable transformation ratio
14 bits (equivalent to a 4096 line quadrature encoder)
8.0 kHz
2.8 Vrms, auto-adjustable by the drive to maximize feedback

100 mA
10,000+
Differential, 54k $\pm 1 \%$ differential impedance, 2.0 Vrms, BW ≥ 300 kHz
Digital, single-ended, 120° electrical phase difference between U-V-W signals,
Schmitt trigger, $1 \mu \mathrm{~s}$ RC filter, 24 Vdc compatible, programmable pull-up/down to $+5 \mathrm{Vdc} /$ ground, Vt+ $=2.5 \sim 3.5 \mathrm{Vdc}, \mathrm{VT}-=1.3 \sim 2.2 \mathrm{Vdc}, \mathrm{VH}=0.7 \sim 1.5 \mathrm{Vdc}$
$10 \mathrm{k} \Omega$ pullups to $+5 \mathrm{Vdc}, 1 \mu \mathrm{~s} \mathrm{RC}$ filter to Schmitt trigger inverters
Digital quadrature encoder ($A, / A, B, / B, X, / X), 121 \Omega$ terminating resistors between $A \& / A, B$ \& $/ B$ inputs 18 M -counts/sec, post-quadrature (4.5 M -lines/sec).
Digital absolute encoder (Clk, /Clk, Dat, /Dat) half or full-duplex operation, 121Ω terminating resistors (See above for listing of absolute encoder types. EnDat $\mathrm{Sin} / \mathrm{Cos}$ signals are not supported) Quadrature encoder emulation with programmable resolution to 4096 lines (65,536 counts) per rev from resolver, $A, / A, B, / B$, outputs from MAX3032 differential line driver, $X, / X, S, / S$ outputs from MAC3362 drivers

2: $+5 \mathrm{Vdc}, 500 \mathrm{~mA}$ max each output, thermal and short-circuit protected
Axis A: J1-17, J1-32, J7-6, J7-17; combined current from these pins cannot exceed 500 mA
Axis B: J1-23, J1-38, J8-6, J8-17; combined current from these pins cannot exceed 500 mA

BP2 Models	BP2-R Models
BP2-090-06	BP2-090-06-R
$B P 2-090-14$	$B P 2-090-14-R$
$B P 2-090-20$	$B P 2-090-20-R$

CANOPEN COMMUNICATIONS

Accelnet uses the CAN physical layer signals CANH, CANL, and GND for connection, and CANopen protocol for communication. Before installing the drive in a CAN system, it must be assigned a CAN address. The maximum allowed nodes on a CAN network is 127, and node 0 is reserved for the CAN master. The Device ID switches can set the BP2 Axis A address from 1 to 126 . The Axis B address is then +1 greater than the Axis A address set by the switches.

For more information on CANopen communications, download the CANopen Manual from the Copley web-site: http://www.copleycontrols.com > Support > Manuals > CANopen Programmer's Manual

CANOPEN LEDS (ON RJ-45 CONNECTORS)

L/A Green: Shows the state of the physical link and activity on the link. Off = No Link
On = Port open, no activity
On \& Flickering = Port open and activity
RUN Green: Shows the state of the CAN state machine
Off = Init
Blinking = Pre-operational
Single-flash = Stopped
On = Operational
ERR Red: Shows errors such as watchdog timeouts and unsolicited state changes in the BP2 due to local errors.
Off $=$ No errors, communications are working correctly Blinking = Invalid configuration, general configuration error Single Flash =Warning limit reached; an error counter of the CAN controller has reached or exceeded the warning level. Double Flash = A guard event or heartbeat event has occurred On = Bus off. The CAN controller is bus off.

J3: CANopen PORTS
RJ-45 receptacles,
8 position, 4 contact

PIN	SIGNAL
8	CAN_V+
7	GND
6	CAN_SHLD
5	THRU
4	THRU
3	CAN_GND
2	CAN_L
1	CAN_H

CANopen Device ID Switch Decimal values
CANopen ADDRESS
In the BP2, the node address provided by two 16-position rotary switches with hexadecimal encoding. These can set the address of the drive from 0x01~0xFF (1~255 decimal). The chart shows the decimal values of the hex settings of each switch.
Example 1: Find the switch settings for decimal address 107:

1) Find the highest number under S1 that is less than 107 and set $S 1$ to the hex value in the same row:
$96<107$ and $112>107$, so S1 = $96=$ Hex 6
2) Subtract 96 from the desired address to get the decimal value of switch S 2 and set S 2 to the Hex value in the same row:
S2 $=(107-96)=11=$ Hex B

INDICATORS: DRIVE STATE

Two bi-color LEDs give the state of the BP2 drive. Colors do not alternate, and can be solid ON or blinking. When multiple conditions occur, only the top-most condition will be displayed.
When that condition is cleared the next one below will shown.

1) Red/Blinking
2) Red/Solid
3) Green/Double-Blinking
4) Green/Slow-Blinking
5) Green/Fast-Blinking
6) Green/Solid

Latching Faults
Defaults

- Short circuit (Internal or external)
- Drive over-temperature
- Motor over-temperature
- Feedback Error
- Following Error
= Latching fault. Operation will not resume until drive is Reset.
$=$ Transient fault condition. Drive will resume operation when the condition causing the fault is removed.
= STO circuit active, drive outputs are Safe-Torque-Off
= Drive OK but NOT-enabled. Will run when enabled
= Positive or Negative limit switch active. Drive will only move in direction not inhibited by limit switch.
= Drive OK and enabled. Will run in response to reference inputs or CANopen commands.

Optional (programmable)

- Over-voltage
- Under-voltage
- Motor Phasing Error
- Command Input Fault

AMP LEDS \&
DEVICE ID
SWITCHES

Set	S1	S2
Hex	Dec	
0	0	0
1	16	1
2	32	2
3	48	3
4	64	4
5	80	5
6	96	6
7	112	7

Set	S1	S2
Hex	Dec	
8	128	8
9	144	9
A	160	10
B	176	11
C	192	12
D	208	13
E	224	14
F	240	15

COMMUNICATIONS: RS-232 SERIAL

$B P 2$ is configured via a three-wire, full-duplex DTE RS-232 port that operates from 9600 to 115,200 Baud, 8 bits, no parity, and one stop bit. Signal format is full-duplex, 3-wire, DTE using RxD, TxD, and Gnd. Connections to the BP2 RS-232 port are through J'4, an RJ-11 connector. The BP2 Serial Cable Kit (SERCK) contains a modular cable, and an adapter that connects to a 9-pin, Sub-D serial port connector (COM1, COM2, etc.) on PC's and compatibles.

After power-on, reset, or transmission of a Break character, the Baud rate will be 9,600. Once communication has been established at this speed, the Baud rate can be changed to a higher rate ($19,200,57,600,115,200$).

SER-CK SERIAL CABLE KIT

The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector on the BP2. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses common modular cable to connect to the BP2. The connections are shown in the diagram below.

J4: RS-232 PORT
RJ-11 receptacle, 6 position, 4 contact

Don't forget to order a Serial Cable Kit SER-CK when placing your order for a BP2!

USB TO RS-232 ADAPTERS
These may or may not have the speed to work at the 115,200 Baud rate which gives the best results with CME2. Users have reported that adapters using the FTDI chipset work well with CME2

ASCII COMMUNICATIONS

The Copley ASCII Interface is a set of ASCII format commands that can be used to operate and monitor Copley Controls Accelnet, Stepnet, and BP2 series amplifiers over an RS-232 serial connection. For instance, after basic amplifier configuration values have been programmed using CME 2, a control program can use the ASCII Interface to:

- Enable the amplifier in Programmed Position mode.
- Home the axis.
- Issue a series of move commands while monitoring position, velocity, and other run-time variables.

The Baud rate defaults to 9,600 after power-on or reset and is programmable up to 115,200 thereafter. After power-on, reset, or transmission of a Break character, the Baud rate will be 9,600. Once communication has been established at this speed, the Baud rate can be changed to a higher rate (19,200, 57,600, 115,200).
ASCII parameter 0×90 holds the Baud rate data. To set the rate to 115,200 enter this line from a terminal:
s r0x90 115200 <enter>
Then, change the Baud rate in the computer/controller to the new number and communicate at that rate.
Additional information can be found in the ASCII Programmers Guide on the Copley website:
http://www.copleycontrols.com/Motion/pdf/ASCII ProgrammersGuide.pdf

SAFE TORQUE OFF (STO)

The Safe Torque Off (STO) function is defined in IEC 61800-5-2 Two channels are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from being operated by the digital control core.

This provides a positive OFF capability that cannot be overridden by the control firmware, or associated hardware components. When the opto-couplers are energized (current is flowing in the input diodes), the control core will be able to control the on/off state of the PWM outputs.

INSTALLATION

Refer to the 16-01338 Accelnet \& Stepnet Plus Panels STO Manual for further details

The information provided in the 16-01338 Accelnet \& Stepnet Plus Panels STO Manual must be considered for any application using the BP2 drive's STO feature.
FAILURE TO HEED THIS WARNING CAN CAUSE EQUIPMENT DAMAGE, INJURY, OR DEATH.

STO BYPASS (MUTING)

In order for the PWM outputs of the BP2 to be activated, current must be flowing through all of the opto-couplers that are connected to the STO-IN1 and STO-IN2 terminals of J6, and the drive must be in an ENABLED state. When the opto-couplers are OFF, the drive is in a Safe Torque Off (STO) state and the PWM outputs cannot be activated by the control core to drive a motor.

This diagram shows connections that will energize all of the optocouplers from an internal current-source. When this is done the STO feature is overridden and control of the output PWM stage is under control of the digital control core.
If not using the STO feature, these connections must be made in order for the BP2 to be enabled.

FUNCTIONAL DIAGRAM

must flow through all of the opto-couplers before the drive can be enabled

* STO bypass connections on the BP2 and Xenus XEL-XPL models are different. If both drives are installed in the same cabinet, the diode should be wired as shown to prevent damage that could occur if the STO bypass connectors are installed on the wrong drive. The diode is not required for STO bypass on the BP2 and can be replaced by a wire between pins 7 and 9 .

STO BYPASS CONNECTIONS

SAFETY CONNECTOR J6

CONNECTIONS

PIN	SIGNAL	PIN	SIGNAL	
1	Frame Gnd	6	STO-1 $(+)$	
2	STO-1(+)	7	STO-1(-)	
3	STO-1(-)	8	STO-24V	
4	STO-2(+)	9	STO-GND	
5	STO-2(-)			

DIGITAL COMMAND INPUTS: POSITION

POSITION COMMAND INPUTS

Single-ended digital position commands must be sourced from devices with active pull-up and pull-down to take advantage of
SINGLE-ENDED PULSE \& DIRECTION

QUAD A/B ENCODER SINGLE-ENDED

ncoder ph. A		Inputs AxissAAB(B)
	$[\operatorname{IN} 3(1-1+2)(6)]$	EIarc. A
$\square \square$	$[\operatorname{IN} 4(\operatorname{in} 3)(7)]$	E可ac. $\mathrm{BB}^{\text {c }}$

the high-speed inputs.

DIFFERENTIAL PULSE \& DIRECTION

DIFFERENTIAL CU/CD

QUAD A/B ENCODER DIFFERENTIAL

SINGLE-ENDED: IN3, 4, 12, 13

Signal	Axis A	Axis B
[IN3(12)] Pls, CU, Enc A	$J 1-9$	J1-14
[IN4(13)] Dir, CD, Enc B	$J 1-10$	$J 1-15$
Signal Ground	J1-6,16,22,31, 37,44	
Frame Ground	$J 1-1$	

For differential commands, the $A \& B$ channels of the multi-mode encoder ports are used.

DIFFERENTIAL: MULTI-PORT A, /A, B, /B

Signal	Axis A	Axis B
[Enc A] Pls, CU, Enc A	J1-36	J1-42
[Enc /A] /PIs, /CU, Enc /A	J1-21	J1-27
[Enc B] Dir, CD, Enc B	J1-35	J1-41
[Enc /B] /Dir, /CD, Enc /B	J1-20	J1-26
Signal Ground	$316,22,31$ Frame Ground $J 1-1$	

DIGITAL COMMAND INPUTS: VELOCITY, TOROUE

Single-ended digital torque or velocity commands must be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs.

SINGLE-ENDED PWM \& DIRECTION

SINGLE-ENDED 50\% PWM

DIFFERENTIAL PWM \& DIRECTION

SINGLE-ENDED: IN3, 4, 12, 13

Signal	Axis A	Axis B
[IN3(12)] Curr-Vel \pm	J1-9	J1-14
[IN4(13)] / Curr-Vel \pm	J1-10	J1-15
Signal Ground	J1-6,16,22,31, 37,44	
Frame Ground	J1-1	

DIFFERENTIAL: MULTI-PORT A, /A, B, /B

Signal	Axis A	Axis B
[Enc A] Curr-Vel \pm	$J 1-36$	$J 1-42$
[Enc /A] /Curr-Vel \pm	$J 1-21$	$J 1-27$
[Enc B] Pol-Dir	$J 1-35$	$J 1-41$
[Enc /B] /Pol-Dir	$J 1-20$	$J 1-26$
Signal Ground	$31-6,16,22,31$ 37,44	
Frame Ground	$J 1-1$	

MULTI-MODE PORT AS AN INPUT

INPUT TYPES

POSITION COMMAND INPUTS: DIFFERENTIAL

- Pulse \& Direction
- CW \& CCW (Clockwise \& Counter-Clockwise)
- Encoder Quad A \& B
- Camming Encoder A \& B input

CURRENT or VELOCITY COMMAND INPUTS: DIFFERENTIAL

- Current or Velocity \& Direction
- Current or Velocity (+) \& Current or Velocity (-)

SECONDARY FEEDBACK: INCREMENTAL

- Quad $A / B / X$ incremental encoder

SECONDARY FEEDBACK: ABSOLUTE

- S channel: Absolute A encoders (2-wire)

The S channel first sends a Clock signal and then receives Data from the encoder in half-duplex mode.

- S \& X channels: SSI, BiSS, EnDat encoders (4-wire) The X channel sends the Clock signal to the encoder, which initiates data transmission from the encoder on the S -channel in full-duplex mode

MULTI-MODE PORT AS AN OUTPUT

OUTPUT TYPES

BUFFERED FEEDBACK OUTPUTS: DIFFERENTIAL

- Encoder Quad A, B, X channels
- Direct hardware connection between quad $A / B / X$ encoder feedback and differential line drivers for $A / B / X$ outputs

EMULATED FEEDBACK OUTPUTS: DIFFERENTIAL
Firmware produces emulated quad A / B signals from feedback data from the following devices:

- Absolute encoders
- Resolvers (-R option)
- Analog Sin/Cos incremental encoders

SIGNALS \& PINS

Signal	Axis A J1	Axis B J1
Encoder A	36	42
Encoder /A	21	27
Encoder B	35	41
Encoder /B	20	26
Encoder X	34	40
Encoder /X	19	25
Encoder S	33	39
Encoder /S	18	24
Signal Ground	$6,16,22,31,37,44$	
Frame Ground	1	

J1 Multi-Port

CME2 DEFAULTS

These tables show the CME2 default settings. They are user-programmable and the settings can be saved to non-volatile flash memory.

Input/Output

Digital Inputs $1-9$ Digital Inputs $10-18$

Axis A	Config	PU/PD	
IN1	Enable-LO	$\begin{aligned} & +5 \mathrm{~V} \\ & \text { or } \\ & \text { Sgnd } \end{aligned}$	
IN2	Not Configured		
IN3			
IN4			
IN5	Opto Not Configured		
IN6			
IN7			
IN8			
IN9	Motemp	+5V	

Axis B	Config	PU/PD	
*IN10	Enable-LO	$\begin{aligned} & +5 \mathrm{~V} \\ & \text { or } \\ & \text { Sgnd } \end{aligned}$	
*IN11	Not Configured		
*IN12			
*IN13			
IN14	Opto Not Configured		
IN15			
IN16			
IN17			
IN18	Motemp	+5V	

Axis A	Axis B	Notes
OUT1	OUT2	Fault Active-OFF
OUT3		
OUT4	Not Configured	
OUT5		
OUT6	OUT7	Brake Active-HI

Axis A	Axis B	Notes
\checkmark	\checkmark	Short Circuit
\checkmark	\checkmark	Amp Over Temp
\checkmark	\checkmark	Motor Over Temp
		Over Voltage
		Under Voltage
		Motor Wiring Disconnected
		STO Active
OPTIONAL FAULTS		
		Over Current (Latched)

Home

Axes A, B	Notes
Method	Set Current Position as Home

HIGH SPEED INPUTS: IN1, IN2, IN10, IN11

- Digital, non-isolated, high-speed
- Progammable pull-up/pull-down
- 24V Compatible
- Programmable functions

FEEDBACK CONNECTOR
SPECIFICATIONS

Input	Data	Notes
Input Voltages	HI	$\mathrm{VT}+=2.5 \sim 3.5 \mathrm{Vdc}$
	LO	$\mathrm{VT}-=1.3 \sim 2.2 \mathrm{Vdc}$
	VH^{1}	$\mathrm{VH}= \pm 0.7 \sim 1.5 \mathrm{Vdc}$
	Max	+30 Vdc
	Min	0 Vdc
Pull-up/down	R 1	$15 \mathrm{k} \Omega$
Low pass filter	R 2	$15 \mathrm{k} \Omega$
	C 1	100 pF
Input Current	24 V	1.3 mAdc
	OV	-0.33 mAdc
Time constant	RC^{2}	$1.5 \mu \mathrm{~s}$

CONNECTIONS

Input	Pin
IN1	J1-7
IN2	J1-8
IN10	$J 1-12$
IN11	J1-13
Sgnd	$J 1-6,16,22,31,37,44$

Notes:

1) VH is hysteresis voltage (VT+) - (VT-)
2) The R2*C2 time constant applies when input is driven by active $\mathrm{HI} / \mathrm{LO}$ devices

SINGLE-ENDED/DIFFERENTIAL INPUTS: IN3, IN4, IN12, IN13

- Digital, non-isolated, high-speed
- Progammable pull-up/pull-down
- 12V Compatible
- Single-ended or Differential
- Programmable functions

SPECIFICATIONS

Input	Data	Notes
Input Voltages Single-ended	HI	$\mathrm{Vin} \geq 2.7 \mathrm{Vdc}$
	LO	$\mathrm{Vin} \leq 2.3 \mathrm{Vdc}$
	VH^{1}	45 mVdc typ
Input Voltages Differential		
	HI	Vdiff $\geq+200 \mathrm{mVdc}$
	LO	Vdiff $\leq-200 \mathrm{mVdc}$
	VH	$\pm 45 \mathrm{mVdc}$ typ
Common mode	Vcm	0 to +12 Vdc
Pull-up/down	R 1	$10 \mathrm{k} \Omega$
Low pass filter	R 2	$1 \mathrm{k} \Omega$
	C 1	100 pF
Time constant	RC^{2}	100 ns

CONNECTIONS

Notes:

1) VH is hysteresis voltage

IN2 - IN3 or IN12 - IN13
2) The R2*C2 time constant applies when input is driven by active $\mathrm{HI} / \mathrm{LO}$ devices)
3) $\operatorname{Vdiff}=\operatorname{AINn}(+)-\operatorname{AINn}(-)$
$n=1$ for Axis $A, 2$ for Axis B

S.E.	DIFF	Pin
IN3	IN3+	$J 1-9$
IN4	IN3-	$J 1-10$
IN12	IN12+	$J 1-14$
IN13	IN12-	$J 1-15$
Sgnd		$J 1-6,16,22,31,37,44$

SINGLE-ENDED

DIFFERENTIAL

copley controls

MOTOR OVERTEMP INPUTS: IN9, IN18

- Digital, non-isolated
- Motor overtemp inputs
- 12V Compatible
- Programmable functions

SPECIFICATIONS

Input	Data	Notes
Input Voltages	HI	$\mathrm{Vin} \geq 3.5 \mathrm{Vdc}$
	LO	$\mathrm{Vin} \leq 0.7 \mathrm{Vdc}$
	Max	+12 Vdc
	Min	0 Vdc
Pull-up/down	R 1	$4.99 \mathrm{k} \Omega$
Input Current	12 V	1.4 mAdc
	0 V	-1.0 mAdc
Low pass filter	R 2	$10 \mathrm{k} \Omega$
	C 1	33 nF
	Te	$330 \mu \mathrm{~s} *$

* RC time constant applies when inputs are driven by active high/low devices

CONNECTIONS

Input	Pin
IN9	$J 7-7$
IN18	J8-7
Sgnd	$37,8-5,16,25,26$

MOTOR OVER TEMP INPUT

The 4.99k pull-up resistor works with PTC (positive temperature coefficient) thermistors that conform to BS 4999: Part 111:1987, or switches that open/close indicating a motor over-temperature condition. The active level is programmable.

BS 4999:PART 111:1987

Property	Ohms
Resistance in the temperature range $20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$60 \sim 750$
Resistance at $85^{\circ} \mathrm{C}$	≤ 1650
Resistance at $95^{\circ} \mathrm{C}$	≥ 3990
Resistance at $105^{\circ} \mathrm{C}$	≥ 12000

OPTO-ISOLATED INPUTS: IN5, IN6, IN7, IN8, IN14, IN15, IN16, IN17

- Digital, opto-isolated
- 2 Groups of four, each with own Common terminal
- Works with current sourcing or sinking drivers
- 24V Compatible
- Programmable functions

SPECIFICATIONS		
Input	Data	Notes
Input Voltages	HI	Vin $\geq \pm 10.0 \mathrm{Vdc} *$
	LO	Vin $\leq \pm 6 \mathrm{Vdc} *$
	Max	$\pm 30 \mathrm{Vdc} *$
Input Current	$\pm 24 \mathrm{~V}$	$\pm 3.6 \mathrm{mAdc}$
	0 V	0 mAdc

* Vdc Referenced to ICOM terminals.

CONNECTIONS			
Signal	Pins	Signal	Pins
IN5	J2-2	IN14	J2-7
IN6	J2-3	IN15	J2-8
IN7	J2-4	IN16	J2-9
IN8	J2-5	IN17	J2-18
ICOM1	J2-6	ICOM2	J2-17

copley Accelnet Plus
 2-Axis Panel CANopen

ANALOG INPUTS: AIN1, AIN2

- $\pm 10 \mathrm{Vdc}$, differential
- 12-bit resolution
- Programmable functions

The analog inputs have a $\pm 10 \mathrm{Vdc}$ range at 12 -bit resolution As reference inputs they can take position/velocity/torque commands from a controller. If not used as command inputs, they can be used as general-purpose analog inputs.

SPECIFICATIONS

Spec	Data	Notes
Input Voltage	Vref	$\pm 10 \mathrm{Vdc}$
Input Resistance	Rin	$5.05 \mathrm{k} \Omega$

CONNECTIONS

Signal	Pins	
	Axis A	Axis B
AIN(+)	J1-3	J1-5
AIN(-)	J1-2	J1-4
Sgnd	J1-6, 16, 22, 31, 37, 44	

OPTO-ISOLATED OUTPUTS: OUT1, OUT2, OUT3, OUT4, OUT5

- Digital, opto-isolated
- MOSFET output SSR, 2-terminal
- Flyback diodes for inductive loads
- 24V Compatible
- Programmable functions

SPECIFICATIONS

Output	Data	Notes
ON Voltage OUT(+) - OUT(-)	Vdc	0.85 V @ 300 mAdc
Output Current	Iout	300 mAdc max

CONNECTIONS

Signal	$(+)$	$(-)$
OUT1	J2-19	J2-10
OUT2	J2-20	J2-11
OUT3	J2-21	J2-12
OUT4	J2-22	J2-13
OUT5	J2-23	J2-14

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition
OUT1~5	HI	Output SSR is ON, current flows
	LO	Output SSR is OFF, no current flows

OPTO-ISOLATED MOTOR BRAKE OUTPUTS: OUT6, OUT7

- Brake outputs
- Opto-isolated
- Flyback diodes for inductive loads
- 24V Compatible
- Connection for external 24 V power supply
- Programmable functions

SPECIFICATIONS

Output	Data	Notes
Voltage Range	Max	+30 Vdc
Output Current	Ids	1.0 Adc

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition
BRK-A,B OUT6,7	HI	Output transistor is OFF Brake is un-powered and locks motor Motor cannot move Brake state is Active
	LO	Output transistor is ON Brake is powered, releasing motor Motor is free to move Brake state is NOT-Active

CME2 Default Setting for Brake Outputs [OUT6,7] is "Brake - Active HI"
Active $=$ Brake is holding motor shaft (i.e. the Brake is Active) Motor cannot move
No current flows in coil of brake
CME2 I/O Line States shows Output 6 or 7 as HI
BRK Output voltage is HI (24 V), MOSFET is OFF
Servo drive output current is zero
Servo drive is disabled, PWM outputs are off
Inactive $=\quad$ Brake is not holding motor shaft (i.e. the Brake is Inactive)

Motor can move
Current flows in coil of brake
CME2 I/O Line States shows Output 6 or 7 as LO
BRK output voltage is LO ($\sim 0 \mathrm{~V}$), MOSFET is ON
Servo drive is enabled, PWM outputs are on
Servo drive output current is flowing

Earthing connections for power supplies should be as close as possible to elimimate potential differences between power supply OV terminals.
*
There should be only one conductor in each position of the J3 connector. If brakes are to be wired directly to J3 for their 24 V power, use a double wire ferrule for J3-4. Information for ferrules can be found on page 27.

The brake circuits are optically isolated from all drive circuits and frame ground.

CONNECTIONS

Pin	Signal
5	Brk 24V Input
4	Brk 24V Output
3	Brake A [OUT6]
2	Brake B [OUT7]
1	24V Return

This diagram shows the connections to the drive that share a common ground in the driver. If the brake 24V power supply is separate from the DC supply powering the drive, it is important that it connects to an earth or common grounding point with the HV power supply.

FEEDBACK CONNECTIONS

QUAD A/B/X ENCODER WITH SIGNAL LOSS DETECTION

Encoders with differential line-driver outputs are required (single-ended encoders are not supported) and provide incremental position feedback via the A/B signals and the optional index signal (X) gives a once per revolution position mark.
The MAX3097 receiver has differential inputs with fault protections for the following conditions:

Condition

Line-line shorts
Open-circuits:
Low-voltage

Example

A shorted to /A
A disconnected, /A connected. Terminator resistor pulls A \& /A together for a short-circuit fault
$\mathrm{Va}-\mathrm{Vb} \leq 200 \mathrm{mV}$, or $\geq-200 \mathrm{mV}$
Encoder power loss, cabling, etc.

SIGNAL LOSS DETECTION LOGIC

CME2 FEEDBACK OPTIONS

Sgnd = Signal Ground F.G. = Frame Gnd

ANALOG SIN/COS INCREMENTAL ENCODER

The sin/cos inputs are analog differential with 121Ω terminating resistors and accept $1 \mathrm{Vp}-\mathrm{p}$ signals in the format used by incremental encoders with analog outputs, or with ServoTube motors. The index input is digital, differential.

SIN/COS SIGNALS

Signal	$37, J 8$ Pin
$\operatorname{Sin}(+)$	19
$\operatorname{Sin}(-)$	18
$\operatorname{Cos}(+)$	21
$\operatorname{Cos}(-)$	20
X	9
$/ \mathrm{X}$	8
+5 V	6,17
Sgnd	$5,16,25,26$
F.G.	1

Sgnd $=$ Signal Ground
F.G. = Frame Gnd

RESOLVER (-R OPTION)

Connections to the resolver should be made with doubleshielded cable that uses three twisted-pairs plus an outer shield. Once connected, resolver set up, motor phasing, and other commissioning adjustments are made with CME 2 software. There are no hardware adjustments.

RESOLVER SIGNALS

Signal	J7,J8 Pin
$\operatorname{Sin}(+)$ S3	19
$\operatorname{Sin}(-) \mathrm{S} 1$	18
$\operatorname{Cos}(+) \mathrm{S} 2$	21
$\operatorname{Cos}(-)$ S4	20
Ref(+) R1	23
Ref(-) R2	22
Sgnd	5,16 25,26 F.G.

Sgnd = Signal Ground
F.G. = Frame Gnd

FEEDBACK CONNECTIONS

SSI ABSOLUTE ENCODER

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The XEL drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The polling of the encoder data occurs at the current loop frequency (16 kHz). The number of encoder data bits and counts per motor revolution are programmable.
The hardware bus consists of two signals: SCLK and SDATA. Data is sent in 8 bit bytes, LSB first. The SCLK signal is only active during transfers. Data is clocked out on the falling edge and clock in on the rising edge of the Master.

BiSS ABSOLUTE ENCODER

BiSS is an - Open Source - digital interface for sensors and actuators. BiSS refers to principles of well known industrial standards for Serial Synchronous Interfaces like SSI, ASInterface $®$ and Interbus $®$ with additional options.

Serial Synchronous Data Communication
Cyclic at high speed
2 unidirectional lines Clock and Data
Line delay compensation for high speed data transfer
Request for data generation at slaves
Safety capable: CRC, Errors, Warnings
Bus capability incl. actuators
Bidirectional
BiSS B-protocol: Mode choice at each cycle start
BiSS C-protocol: Continuous mode

SSI,BiSS SIGNALS

SSI	BiSS	J7,J8 Pin
Clk	MA+	9
/Clk	MA-	8
Data	SL+	15
/Data	SL-	14
$+5 \mathrm{~V}$		6,17
Signal Ground		$5,16,25,26$
Frame Gnd		1

Note: Single (outer) shields should be connected at both ends (motor and drive frame grounds). Inner shields should only be connected to Signal Ground on the drive.

ENDAT ABSOLUTE ENCODER

The EnDat interface is a Heidenhain interface that is similar to SSI in the use of clock and data signals, but which also supports analog \sin / \cos channels from the same encoder. The number of position data bits is programmable as is the use of \sin / cos channels. Use of sin/cos incremental signals is optional in the EnDat specification.

ENDAT
SIGNALS

Signal	J7, J8 Pin
Clk	9
$/ \mathrm{Clk}$	8
Data	15
/Data	14
$\operatorname{Sin}(+)$	19
$\operatorname{Sin}(-)$	18
$\operatorname{Cos}(+)$	21
$\operatorname{Cos}(-)$	20
+5 V	6,17
Sgnd	$5,16,25,26$
F.G.	1

Sgnd $=$ Signal Ground
F.G. = Frame Gnd

ABSOLUTE-A ENCODER

The Absolute A interface is a serial, half-duplex type that is electrically the same as RS-485. Note the battery which must be connected. Without it, the encoder will produce a fault condition.

ABSOLUTE-A SIGNALS

Signal	J7,J8 Pin
Data	15
/Data	14
+5 V	6,17
Sgnd	$5,16,25,26$
F.G.	1

Sgnd = Signal Ground
F.G. = Frame Gnd

MOTOR CONNECTIONS

MOTOR PHASE CONNECTIONS

The drive outputs are three-phase PWM inverters that convert the DC buss voltage (+HV) into three sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the motor. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. Further details on motor connections can be found on page 24 .

DIGITAL HALL SIGNALS

Hall signals are single-ended signals that provide absolute feedback within one electrical cycle of the motor. There are three of them (U , $\mathrm{V}, \& \mathrm{~W}$) and they may be sourced by magnetic sensors in the motor, or by encoders that have Hall tracks as part of the encoder disc. They typically operate at much lower frequencies than the motor encoder signals, and are used for commutation-initialization after startup, and for checking the motor phasing after the amplifier has switched to sinusoidal commutation.
MOTOR SIGNALS

Signal	J9,J10 Pin
Mot U	4
Mot V	3
Mot W	2
Frame Gnd	1

* MOT W not used for DC brush motors

HALL SIGNALS

Signal	J7,J8 Pin
Hall U	2
Hall V	3
Hall W	4
+5 V	6,17
Sgnd	$5,16,25,26$
Frame Gnd	1

MOTOR OVER TEMP INPUT

The 4.99 k pull-up resistor works with PTC (positive temperature coefficient) thermistors that conform to BS 4999:Part 111:1987 (table below), or switches that open/close indicating a motor over-temperature condition. The active level is programmable. These inputs are programmable for other functions if not used as Motemp inputs. And, other inputs are programmable for the Motemp function.

MOTEMP SIGNALS

Signal	Pin
Motemp A	J7-7
Motemp B	J8-7
J7,J8 Signal Ground	5,10
Frame Gnd	12

BS 4999 SENSOR

Property	Ohms
Resistance in the temperature range $20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$60 \sim 750$
Resistance at $85^{\circ} \mathrm{C}$	≤ 1650
Resistance at $95^{\circ} \mathrm{C}$	≥ 3990
Resistance at $105^{\circ} \mathrm{C}$	≥ 12000

MOTOR CONNECTIONS: DIGITAL OUAD A/B ENCODER

The connections shown may not be used in all installations
Accelnet Plus Panel 2-Axis

NOTES:

1) The +5VOut1 on J1-17,32 and J7-6, 17 is rated for 500 mA

The +5 VOut2 on J1-23,38 and J8-6, 17 is rated for 500 mA
These are two independent power supplies, each with a 500 mA max output from all pins
2) CE symbols indicate connections required for CE compliance.

MOTOR CONNECTIONS: ANALOG SIN/COS ENCODER

The connections shown may not be used in all installations

Accelnet Plus Panel 2-Axis

NOTES:

1) The +5VOut1 on J1-17,32 and J7-6, 17 is rated for 500 mA

The +5VOut2 on J1-23,38 and J8-6, 17 is rated for 500 mA
These are two independent power supplies, each with a 500 mA max output from all pins
2) CE symbols indicate connections required for CE compliance.

MOTOR CONNECTIONS: RESOLVERS (-R OPTION)

The connections shown may not be used in all installations.
Hall signals are not generally used with resolver feedback but are shown here because they function if needed for resolver operation.

Accelnet Plus 2-Axis

NOTES:

1) The + 5 VOut1 on $31-17,32$ and $J 7-6,17$ is rated for 500 mA

The +5VOut2 on J1-23,38 and J8-6, 17 is rated for 500 mA
These are two independent power supplies, each with a 500 mA max output from all pins
2) CE symbols indicate connections required for CE compliance.

DEVICE STRUCTURE \& ISOLATION

This graphic shows the electrical structure of the drive, detailing the elements that share a common circuit common (Signal Ground, HV Com) and circuits that are isolated and have no connection to internal circuits. Note that there is no connection between the heatplate (Chassis, Frame Ground) and any drive circuits.

POWER \& GROUNDING CONNECTIONS

DC POWER CONNECTIONS

- DC power must be provided by transformers that are galvanically isolated and provide reinforced insulation from the mains. Auto-transformers cannot be used.
- The (-) terminal of the power supply is not grounded at the power supply. It is grounded near each drive.
- Cabling to multiple drives for the +HV and OV is best done in a "star" configuration, and not a "daisy-chain".
- The OV , or return terminal of the DC power should be connected to frame ground near the drive power connector. From that point, a short wire can connect to the drive HV Ground.
- Cabling to the drive +HV and OV terminals must be sized to carry the expected continuous current of the drive in the user's installation.
- DC power cabling should be shielded, twisted-pair for best EMI reduction. The shield should connect to the power supply frame ground on one end, and to the drive frame ground on the other. Adding a pigtail and ring-lug, as short as possible will provide a good connection of the shield at the drive.
- Motor cabling typically includes a green/yellow conductor for protective bonding of the motor frame. Connect as shown in the Motor Connections diagram on the following page.
- Motor cable conductors should be twisted and shielded for best EMI suppression.
- If a green/yellow grounding wire connects the motor to the drive's PE terminal, the shield pigtail and ring-lug may connect to one of the screws that mount the drive to the panel. A P-clip to ground the shield as near as possible to the drive will increase the EMI suppression of the shield. On the motor-end, the shield frequently connects to the connector shell. If the motor cable is a flyinglead from the motor, the shield may be connected to the motor frame internally.
- Braided cable shields are more effective for EMI reduction than foil shields. Double-shielded cables typically have a braided outer shield and foil shields for the internal twisted pairs. This combination is effective for both EMI reduction and signal quality of the feedback signals from analog encoders or resolvers.
- Motor cable shielding is not intended to be a protective bonding conductor unless otherwise specified by the motor manufacturer.
- For feedback cables, double-shielded cable with a single outer shield and individual shielded twisted pair internal shields gives the best results with resolvers, or analog sin/cos encoders.
- In double-shielded cables, the internal shielding should connect to the drive's Signal Ground on one end, and should be unconnected on the motor end.
- Single-shield feedback cables connect to the drive frame on one end, and to the motor frame on the other. Depending on the construction of the motor, leaving the feedback cable shield disconnected on the motor but connected on the drive end may give better results.
- The drive should be secured to the equipment frame or panels using the mounting slots. This ensures a good electrical connection for optimal EMI performance. The drive chassis is electrically conductive.

DC POWER WIRING

P-clips secure cables to a panel and provide full contact to the cable shields after the insulation has been stripped. This should be done as close to the drive as possible for best EMI attenuation.

+HV POWER SUPPLY REQUIREMENTS

Regulated Power Supplies

- Must be over-voltage protected to 100 Vdc max when the STO (Safe Torque Off) feature of the drive is used.
- Require a diode and external capacitor to absorb regenerative energy.
- The VA rating should be greater than the actual continuous output power of the drives connected to the power supply, and adequate for the transient output power due to acceleration of motor loads.

- Must handle the internal capacitance of the drives on startup.

Unregulated Power Supplies

- No-load, high-line output voltage must not exceed 90 Vdc .
- Power supply internal capacitance adds to the drive's internal capacitance for absorption of regenerative energy.
- The VA (Volts \& Amps) rating at the power supply's AC input is typically 30~40\% greater than the total output power of the drives.

AUXILIARY HV POWER

- Aux HV is power that can keep the drive communications and feedback circuits active when the PWM output stage has been disabled by removing the main +HV supply.
- Useful during EMO (Emergency Off) conditions where the +HV supply must be removed from the drive and powered-down to ensure operator safety.
- Voltage range is the same as +HV .
- Powers the DC/DC converter that supplies operating voltages to the drive DSP and control circuits.
- Aux HV draws no current when the +HV voltage is greater than the Aux HV voltage.

MOTOR CONNECTIONS

- Motor cable shield connects to motor frame, is grounded with a P-clip near the drive and terminates in a ring-lug that is screwed to the drive chassis by a mounting screw to the panel
- If provided, a green/yellow grounding wire from the motor connects to the F.G. terminal of the motor connector.

FEEDBACK CONNECTIONS

- Cable shield connects to motor frame and to the F.G. terminal of the feedback connector.
- When double-shielding is used, the inner shields connect to the Signal Ground at the drive, and is not connected at the motor end.
- If not provided by the motor manufacturer, feedback cables rated for RS-422 communications are recommended for digital encoders.

REGENERATION

This chart shows the energy absorption in W.s for the drive operating at some typical DC voltages. It is based on the internal 1360 uF capacitance and would be increased by the capacitance of the external DC power supply. When the load mechanical energy is greater than these values an external regenerative energy dissipater is required, or the DC power supply capacitance can be increased to absorb the regen energy.

J6 SAFETY (SAFETORQUE OFF)

PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	6	STO-1(+)
2	STO-1(+)	7	STO-1(-)
3	STO-1(-)	8	STO-24V
4	STO-2(+)	9	STO-GND
5	STO-2(-)		

J6 BP2 CONNECTOR:
Dsub DB-09F, 9 position female receptacle
J6 CABLE CONNECTOR:
Dsub DB-09M, 9 position
Details on J1, J2, J6, J7, and J8 cable connectors can be found in the BP2-CK listing under the Accessories section of the last page

PIN	SIGNAL
44	Signal Gnd
43	N/C
42	B-MultiEnc A
41	B-MultiEnc B
40	B-MultiEnc X
39	B-MultiEnc S
38	B +5Vdc Out2
37	Signal Gnd
36	A-MultiEnc A
35	A-MultiEnc B
34	A-MultiEnc X
33	A-MultiEnc S
32	A +5Vdc Out1
31	Signal Gnd

PIN	SIGNAL
30	N/C
29	N/C
28	N/C
27	B-MultiEnc /A
26	B-MultiEnc /B
25	B-MultiEnc /X
24	B-MultiEnc /S
23	B +5Vdc Out2
22	Signal Gnd
21	A-MultiEnc /A
20	A-MultiEnc /B
19	A-MultiEnc /X
18	A-MultiEnc /S
17	A +5Vdc Out1
16	Signal Gnd

PIN	SIGNAL
15	[IN13] Diff2(-)
14	[IN12] Diff2(+)
13	[IN11]
12	[IN10]
11	N/C
10	[IN4] Diff1(-)
9	[IN3] Diff1(+)
8	[IN2]
7	$[$ IN1]
6	Signal Gnd
5	[AIN2+]
4	[AIN2-]
3	$[A I N 1+]$
2	$[A I N 1-]$
1	Frame Gnd

J1: DRIVE CONNECTOR
High-Density Dsub DB-44F, female receptacle, 44 Position
J1: CABLE CONNECTOR
High-Density Dsub DB-44M, male plug, 44 Position

J2: ISOLATED I/O

PIN	SIGNAL	1PIN	SIGNAL	PIN	SIGNAL
19	[OUT1+] GPI	10	[OUT1-] GPI	1	Frame Ground
20	[OUT2+] GPI	11	[OUT2-] GPI	2	[IN5] GPI
21	[OUT3+] GPI	12	[OUT3-] GPI	3	[IN6] GPI
22	[OUT4+] GPI	13	[OUT4-] GPI	4	[IN7] GPI
23	[OUT5+] GPI	14	[OUT5-] GPI	5	[IN8] GPI
24	N/C	15	N/C	6	COM1 [IN5~8]
25	N/C	16	N/C	7	[IN14] GPI
26	N/C	17	COM2 [IN14~17]	8	[IN15] GPI
		18	[IN17] GPI	9	[IN16] GPI

J2: DRIVE CONNECTOR
High-Density Dsub DB-26M, male plug, 26 Position
J2: CABLE CONNECTOR
High-Density Dsub DB-26F, female receptacle, 26 Position

copley controls

CONNECTORS \& SIGNALS: FRONT PANEL

	J3:		
Pin	Signal		
1	24V Return		
2	Brake B [OUT7]		
3	Brake A [OUT6]		
4	Brk 24V Output		
5	Brk 24V Input		

J3: DRIVE CONNECTOR
Euro-style 3.5 mm male receptacle, 5 -position
Wago: MCS-MINI, 734-165/108-000
J3: CABLE CONNECTOR
Wago MCS-MINI 734-105/107-000
or 734-105/107-000
WAGO CONNECTOR TOOL
Contact opener: 734-231 operating tool

CONNECTORS \& SIGNALS: END PANEL

J7, J8: AXIS A, B FEEDBACK

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL		,
1	Frame Gnd	10	A(B) Enc /B	19	A(B) $\operatorname{Sin}(+)$, 3
2	A(B) Hall U	11	A(B) Enc B	20	A(B) $\operatorname{Cos}(-)$		J7, J8: FEEDBACK
3	A(B) Hall V	12	A(B) Enc /A	21	A(B) $\operatorname{Cos}(+)$		J7, J8: BP2 CONNECTOR
4	A(B) Hall W	13	A(B) Enc A	22	N/C		High-Density Dsub DB-26F,
5	Signal Gnd	14	A(B) Enc /S	23	N/C		remale receptacle, 26 Postio
6	A(B) + 5VOut1(2)	15	A(B) Enc S	24	N/C		J7, J8: CABLE CONNECTOR
7	[IN9(18)] A(B) Motemp	16	Signal Gnd	25	Signal Gnd		male plug, 26 Position
8	A(B) Enc /X	17	A(B) +5VOut1(2)	26	Signal Gnd		
9	A(B) Enc X	18	A(B) $\operatorname{Sin}(-)$				

J9, J10

$J 11$

19, J10: MOTOR OUTPUTS

Signal	Pin
Frame Ground	1
Motor Phase W	2
Motor Phase V	3
Motor Phase U	4

J9, J10: DRIVE CONNECTORS
Euro-style 5.08 mm male receptacle, 4 -position Wago: MCS-MIDI, 231-564/108-000
19, J10 CABLE CONNECTORS
Wago MCS-MIDI Classic 231-304/107-000
WAGO CONNECTOR TOOL
Contact opener: 231-159 operating tool

J11:+HV \& AUX POWER

Signal	Pin
HV Ground	1
HV	2
Aux HV	3

J11: DRIVE CONNECTOR
Euro-style 5.08 mm male receptacle, 3-position Wago: MCS-MIDI, 231-563/108-000
J11: CABLE CONNECTOR
Wago MCS-MIDI, 231-303/107-000
WAGO CONNECTOR TOOL
Contact opener: 231-159 operating tool

CONNECTORS \& SIGNALS: END PANEL (-R MODELS WITH RESOLVER FEEDBACK)

J7, J8: AXIS A, B FEEDBACK

PIN	SIGNAL
1	Frame Gnd
2	A(B) Hall U
3	A(B) Hall V
4	A(B) Hall W
5	Signal Gnd
6	A(B) +5VOut1(2)
7	[IN9(18)] A(B) Motemp
8	N.C.
9	N.C.

PIN	SIGNAL
10	N.C.
11	N.C.
12	N.C.
13	N.C.
14	N.C.
15	N.C.
16	Signal Gnd
17	A(B) +5 VOut1(2)
18	A(B) $\operatorname{Sin}(-)$ S1

PIN	SIGNAL
19	$A(B) \operatorname{Sin}(+)$ S3
20	$A(B) \operatorname{Cos}(-)$ S4
21	$A(B) \operatorname{Cos}(+)$ S2
22	$A(B) \operatorname{Ref}(-)$ R2
23	$A(B) \operatorname{Ref}(+)$ R1
24	N/C
25	Signal Gnd
26	Signal Gnd

J7, $\mathbf{J 8}$
J7, J8: FEEDBACK
J7, J8: BE2 CONNECTOR
High-Density Dsub DB-26F, female receptacle, 26 Position

J7, J8: CABLE CONNECTOR High-Density Dsub DB-26M, male plug, 26 Position

$J 11$

J9, J10: MOTOR OUTPUTS

Signal	Pin
Frame Ground	1
Motor Phase W	2
Motor Phase V	3
Motor Phase U	4

J9, J10: DRIVE CONNECTORS
Euro-style 5.08 mm male receptacle, 4 -position Wago: MCS-MIDI, 231-564/108-000

J9, J10 CABLE CONNECTORS
Wago MCS-MIDI Classic 231-304/107-000
WAGO CONNECTOR TOOL
Contact opener: 231-159 operating tool

J11:+HV \& AUX POWER

Signal	Pin
HV Ground	1
HV	2
Aux HV	3

J11: DRIVE CONNECTOR
Euro-style 5.08 mm male receptacle, 3 -position
Wago: MCS-MIDI, 231-563/108-000
J11: CABLE CONNECTOR
Wago MCS-MIDI, 231-303/107-000
WAGO CONNECTOR TOOL
Contact opener: 231-159 operating tool

copley controls
 Accelnet Plus
 2-Axis Panel CANopen

WIRING

24V \& BRAKE: J5
Wago MCS-MINI: 734-105/107-000, female connector; with screw flange, 5 -pole; pin spacing $3.5 \mathrm{~mm} / 0.138$ in

Conductor capacity Bare stranded:
Insulated ferrule: Stripping length: Operating tool:

AWG 28~16 [0.08~1.5 mm2]
AWG $24 \sim 16$ [0.25~1.5 mm2]
$0.24 \sim 0.28$ in[$6 \sim 7 \mathrm{~mm}]$
Wago MCS-MINI: 734-231

FERRULE PART NUMBERS: SINGLE WIRE INSULATED

AWG	mm^{2}	Color	Mfgr	PNUM	A	B	C	D	E	SL
18	1.0	Red	Wago	$216-223$	$12.0(.47)$	$6.0(.24)$	$1.4(.06)$	$3.0(.12)$	$3.5(.14)$	$8(.31)$
20	0.75	Gray	Wago	$216-222$	$12.0(.47)$	$6.0(.24)$	$1.2(.05)$	$2.8(.11)$	$3.3(.13)$	$8(.31)$
22	0.5	White	Wago	$216-221$	$12.0(.47)$	$6.0(.24)$	$1.0(.04)$	$2.6(.10)$	$3.1(.12)$	$7.5(.30)$

FERRULE PART NUMBERS: DOUBLE WIRE INSULATED

AWG	mm^{2}	Color	Mfgr	PNUM	A	B	C	D	E
2×18	2×1.0	Red	Altech	2776.0	$15.4(.61)$	$8.2[.32]$	$2.4(.09)$	$3.2(.13)$	$5.8(.23)$
2×18	2×1.0	Gray	Altech	2775.0	$14.6(.57)$	$8.2(.32)$	$2.0(.08)$	$3.0(.12)$	$5.5(.22)$
2×20	2×0.75	White	Altech	2794.0	$14.6(.57)$	$8.2(.32)$	$1.7(.07)$	$3.0(.12)$	$5.0(.20)$
2×20	2×0.75	Gray	TE	$966144-2$	$15.0(.59)$	$8.0(.31)$	$1.70(.07)$	$2.8(.11)$	$5.0(.20)$
2×22	2×0.50	White	TE	$966144-1$	$15.0(.59)$	$8.0(.31)$	$1.40(.06)$	$2.5(.10)$	$4.7(.19)$

DOUBLE WIRE

HV/AUX POWER AND MOTOR OUTPUTS: 17 \& J8
Wago MCS-MIDI Classic: 231-304/107-000 (J7), 231-303/107-000 (J8),
female connector; with screw flange; 3-pole; pin spacing $5.08 \mathrm{~mm} / 0.2$ in
Conductor capacity
Bare stranded:
Insulated ferrule:
Stripping length:
AWG 28~14 [0.08~2.5 mm2]
Operating Tool: AWG 24~16 [0.25~1.5 mm2] 8~9 mm
Wago MCS-MIDI Classic: 231-159

J7

FERRULE PART NUMBERS: SINGLE WIRE INSULATED

AWG	mm^{2}	Color	Mfgr	PNUM	A	B	C	D	E	SL
14	2.5	Blue	Wago	$216-206$	$15.0(0.59)$	$8.0(0.31)$	$2.05(.08)$	$4.2(0.17)$	$4.8(0.19)$	$10(0.39)$
16	1.5	Black	Wago	$216-204$	$14.0(0.59$	$8.0(0.31)$	$1.7(.07)$	$3.5(0.14)$	$4.0(0.16)$	$10(0.39)$
18	1.0	Red	Wago	$216-223$	$12.0(.47)$	$6.0(.24)$	$1.4(.055)$	$3.0(.12)$	$3.5(.14)$	$8(.31)$
20	0.75	Gray	Wago	$216-222$	$12.0(.47)$	$6.0(.24)$	$1.2(.047)$	$2.8(.11)$	$3.3(.13)$	$8(.31)$
22	0.5	White	Wago	$216-221$	$12.0(.47)$	$6.0(.24)$	$1.0(.039)$	$2.6(.10)$	$3.1(.12)$	$7.5(.30)$

NOTES
PNUM = Part Number
SL = Stripping length
Dimensions: mm (in)

THERMALS: POWER DISSIPATION

The top chart on this page shows the internal power dissipation for one axis of the BP2 under differing power supply and output current conditions. The + HV values are for the average DC voltage of the drive power supply. The lower chart shows the temperature rise vs. power dissipation under differing mounting and cooling conditions.

TOTAL POWER DISSIPATION

Use this chart to find the total power dissipation for both axes.
Example:
Power supply HV $=65 \mathrm{Vdc}$
Axis 1 current $=7.5 \mathrm{~A}$, axis $2=9.0 \mathrm{~A}$
Total current $=16.5 \mathrm{~A}$
Total dissipation $=19$ Watts

THERMALS: MAXIMUM OPERATING TEMPERATURE VS. DISSIPATION

Use this chart to find the maximum operating temperature of the drive under differing mounting and cooling conditions. Example:
Using the 19 W value from the calculations above, draw a vertical line. This shows that 24 C is the maximum operating temperature for NHSNF, and that any of the other mounting/cooling options will be sufficient for operation up to the maximum ambient temperature of 45 C .

```
HSF = Heat Sink (with) Fan
NHSF = No Heat Sink (with) Fan
HSNF = Heat Sink No Fan
NHSNF = No Heat Sink No Fan
```


THERMALS: MOUNTING \& THERMAL RESISTANCE

MOUNTING
Thermal data for convection-cooling with a heatsink assumes a vertical mounting of the drive on a thermally non-conducting surface. Heatsink fins run parallel to the long axis of the drive. When fan-cooling is used vertical mounting is not necessary to guarantee thermal performance of the heatsink.

THERMAL RESISTANCE
Thermal resistance is a measure of the temperature rise of the drive heatplate due to power dissipation in the drive. It is expressed in units of ${ }^{\circ} \mathrm{C} / \mathrm{W}$ where the degrees are the temperature rise above ambient.
E.g., an drive dissipating 16 W mounted with no heatsink or fan would see a temperature rise of 38.2C above ambient based on the thermal resistance of 2.39C/W. Using the drive maximum heatplate temperature of 70C and subtracting 38.2C from that would give 31.7C as the maximum ambient temperature the drive in which the drive could operate before going into thermal shutdown. To operate at higher ambient temperatures a heatsink or forced-air would be required.

NO HEATSINK, NO FAN	${ }^{\circ} \mathbf{C} / \mathbf{W}$
CONVECTION	2.32

NO HEATSINK + FAN	${ }^{\circ} \mathbf{C} / \mathrm{W}$
FORCED-AIR, 300 LFM	0.98

HEATSINK, NO FAN	${ }^{\circ} \mathbf{C} / \mathbf{W}$
CONVECTION	1.28

HEATSINK + FAN	${ }^{\circ} \mathbf{C} / \mathbf{W}$
FORCED-AIR, 300 LFM	0.61

HEATSINK KIT INSTALLATION

- Standard heatsink for Accelnet Plus Panel BP2
- Complete kit for user installation of the heatsink

DESCRIPTION

The BP2-HK is a kit containing a heatsink and mounting hardware for field installation of a standard heatsink onto a BP2 model servo drive.
To order an BP2 drive with heatsink fitted at the factory, add "-H" to the model part number.

BP2-HK HEATSINK KIT PART LIST

Qty	Description	
1	Heatsink, standard, BP2-HS	
1	Thermal material, 4×4 in.	
1	Kit, Heatsink Hardware, BP2	
	4	
	4	
	4	

INSTALLATION

1) Place the heatsink fins-down on a work surface. Orient the heatsink so that the edge with part number is away from you. The hole for the BP2 grounding lug should be to your left.
2) Remove the clear protective film from the thermal material and discard it. Place the thermal material onto the heatsink in the placement area which is marked with four white "L". Apply light pressure to ensure that the thermal material is flat.
3) Peel the white protective layer away from the thermal material. Do this slowly from one corner so as not to lift the thermal material from the heatsink.
4) Align the BP2 as shown and lower onto the heatsink. If needed to adjust the position, lift it away from the thermal material and lower onto the heatsink again.
5) Install the four mounting screws with flat washers and tighten evenly. Torque to 17.8 lb -in (2.0 Nm) maximum.

DIMENSIONS: IN (MM)

Mounting screws:

DIMENSIONS: IN (MM)

(4)

INSTALLATION

The graphic below shows the recommended mounting for multiple drives. The clearances shows are minimums.

THIS PAGE
LEFT BLANK
INTENTIONALLY

copley \& Accelnet Plus
 2-Axis Panel CANopen

ORDERING GUIDE

BP2-090-06	Accelnet Plus 2-Axis Panel CANopen servo drive, 3/6 A, 90 Vdc
BP2-090-14	Accelnet Plus 2-Axis Panel CANopen servo drive, 7/14 A,90 Vdc
BP2-090-20	Accelnet Plus 2-Axis Panel CANopen servo drive, 10/20 A, 90 Vdc

Add -R to model number for resolver feedback option (Example: BP2-090-14-R)
Add -H to model number for factory-installed heatsink
Example: Order one Accelnet Plus BP2 drive, 7/14 A, resolver option, with connector kit, serial cable kit, heatsink fitted at the factory:

Qty	Item	Remarks
1	BP2-090-14-R-H	Accelnet Plus BP2 2-axis servo drive, resolver option, and factory-mounted heatsink
1	BP2-CK	BP2 Connector Kit

ACCESSORIES

	Qty	Ref	Name	Description	Manufacturer P/N
BP2-CK Connector Kit	1	J11	DC HV	Plug, 3 position, 5.08 mm , female	Wago: 231-303/107-000 (Note 1)
	1			Strain relief, snap-on, $5.08 \mathrm{~mm}, 3$ position, orange	Wago: 232-633
	2	J9, J10	Motor	Plug, 4 position, 5.08 mm , female	Wago: 231-304/107-000 (Note 1)
	2			Strain relief, snap-on, 5.08 mm , 4 position, orange	Wabo: 232-634
	1	J9~J11	Tool	Tool, wire insertion \& extraction, 231 series	Wago: 231-159
	1	J3	Brake	Plug, 5 position, 3.5 mm , female	Wago: 734-105/107-000 (Note 1)
	1			Strain relief, snap-on, 3.5 mm , 5 position, grey	Wago: 734-605
	1		Tool	Tool, wire insertion \& extraction, 734 series	Wago: 734-231
	1	J6 Note 2	Safety	Connector, DB-9M, 9-position, standard, male	TE/AMP: 205204-4
	9			AMPLIMITE HD-20 Crimp-Snap contacts, 24-20AWG, AU flash	TE/AMP: 66506-9
	1			Metal Backshell, DB-9, RoHS	3M: 3357-9209
	4			Jumper, with pins crimped on both ends	Copley: 10-75177-01
	1	J1	Control	Connector, high-density DB-44M, 44 position, male, solder cup	Norcomp: 180-044-103L001
	1			Metal Backshell, DB-25, RoHS	3M: 3357-9225
	1	J2	I/O	Connector, high-density DB-26F, 26 position, female, solder cup	Norcomp: 180-026-203L001
	2	J7, 38	Feedback	Connector, high-density DB-26M, 26 position, male, solder cup	Norcomp: 180-026-103L001
	3	J2, J7, 38		Metal Backshell, DB-15, RoHS	3M: 3357-9215
SER-CK	1	J5	RS-232	Serial Cable Kit	
BP2-NC-10	1	J8	Network	CAN network cable, 10 ft (3 m)	
BP2-NC-01	1			CAN network cable, 1 ft (0.3 m)	

Note 1: For RoHS compliance, append "/RN01-0000" to the Wago part numbers listed above
Note 2: Insertion/extraction tool for J6 contacts is AMP/Tyco 91067-2 (not included in BP2-CK)

16-01441 Document Revision History

Revision	Date	Remarks
00	June 13,2018	Initial released version

Note: Specifications subject to change without notice

